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S u m m a r y 
An approach has been developed by the authors to estimate the tooth stiffness variation of worm gear 
drives, and to calculate the instantaneous tooth meshing stiffness.  In the approach, a closed form 
solution that is substantiated by a finite element (FE) modeling based on the exact tooth geometry, which 
ensures that the worm gear teeth are in localized contact is presented.  The geometric modeling method 
for involute worm gears allows the tooth elastic deformation of worm gear drives under different load 
conditions to be investigated.  On the basis of both the closed form and finite element analysis, the 
instantaneous meshing stiffness and combined stiffness of worm and gear are predicted.  In comparison 
with existing methods, this approach provides more accurate tooth geometry and stiffness variation that 
can be extended to calculate load capacity rating, lubrication characteristics and relevant stresses of 
worm gear drives. 
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1.  INTRODUCTION 
Worm gears have been widely used in 

industry for many years because they achieve high 
reduction ratios, low speed and low noise 
operation.  In the case of conventional design, gear 
specifications are determined using a standardized 
method.  However, small size worm gears that are 
used for transmitting high power are expected to 
wear at an accelerated rate raising the problem of 
failure of the teeth due to fatigue.  Therefore, 
development of a method of rational design for 
such teeth is desired.  If load distribution of gears 
along the contact line is determined, oil film 
thickness , contact pressure and tooth root stress at 
an arbitrary position on the tooth surface can be 
calculated. 

However, the accurate calculation of tooth 
load distribution requires accurate determination of 
stiffness variation of meshing teeth from beginning 
to end of contact. 

Yang et al [1] used a 3-D Finite Element 
Analysis to determine load sharing and stiffness 
variation of contacting worm drive.  Their analysis 
produced reliable results, but it took too much 
computing time.  Zhang et al [2], on the other 
hand, used Finite Element Analysis, as well to 
determine loads and stresses.  But the computation 
time was a major drawback in their analysis.  
Therefore, we plan to develop a calculation method 
to determine tooth stiffness using tooth deflection 
equations and substantiate the results by Finite 
Element Analysis (FEA).  The calculated results 
ought to be compared with experimental results 
obtained from literature in order to gain 
recognition. 

2.  MESH GEOMETRY: 
The cylindrical (single enveloping) worm 

and gear of a set have the same hand of helix.  The 
lead angle λ on the worm equals the helix angle ψ 
on the gear and the worm axial pitch px and the 
gear transverse circular pitch pt are equal as well 
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for a 90° shaft angle.  The worm lead angle is the 
complement of the worm helix angle.  The pitch 
radius of the gear R2 is the radius measured on a 
plane containing the worm axis and is determined 
from: 
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where NG is the number of teeth on the gear.  The 
Lead of worm L is calculated from: 
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where φ is the pitch pressure angle.  The center 
distance of the gear set C is related to the root Rr, 
pitch R and outside Ro radii of the worm and gear 
as follows: 
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where 1, 2 refer to the worm and gear, 
respectively.  Note that the tooth clearance is 
neglected in driving equation (2). 

The worm base radius is calculated from: 
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=
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whereas the worm form radius Rf (radius to top of 
fillet on worm thread) is determined from [3]. 
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where δ is determined from: 
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The actual contact ratio CR of the worm gear set is 
calculated from: 
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where 
2bR is the base radius of the gear and is 

determined from 

φ= cosRR 22b  (7) 

and     
λ
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1

 

The contact ratio, given in (6), is the number 
of teeth on the worm and gear that are in 
simultaneous mesh at a given instant. 

Figure 1. Worm model 

3.  GEAR MESH MODELING: 
To facilitate the analysis and use the 

experience already established in literature, both 
the worm and gear were modeled as a series of 
spur gear segments (slices) whose orientation 
depends on their location within the mesh.  This 
approach was first introduced by Tredgold [4] and 
later used to model non-spur gears.  Figure (1) and 
Figure (2) show the modeling of the worm and 
gear, respectively, while Figure (3) shows the 
slicing directions of the set as well as the various 
contact lines that take place along the tooth flank 
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from start to end meshing.  The exact number of 
contact lines that takes place at a given instant of 
time is determined by the magnitude of the contact 
ratio. Each slice on the set can be modelled as a 
spur gear if the width of the slice is made relatively 
small. Therefore, the accuracy of results will 
depend on the number of the slices that represent 
both the worm and the gear.  The more these slices, 
the better the results that are obtained.  Moreover, 
spur gear slices on the worm will have the same 
root and outside diameters as the worm itself, but 
their exact points of contact with their counterpart 
slices of the gear will depend on their location.  On 
the other hand, the geometry of the slices on the 
gear will have variable root and outside diameters 
depending on their location as shown in Figure (3).  
The face width of each slice of the set depends also 
on the geometry and the number of slices 
considered. 

Figure 2. Gear Model 

 

4. SLICE DEFLECTION AND 
    STIFFNESS CALCULATION: 

Each slice on either the worm or gear is 
considered as a straight spur gear whose main 
dimensions depend upon the location of the slice.  
If a slice is subjected to a normal load Fi, then the 
total deflection δ is calculated from the equation 
given in [5] which accounts for bending, shear, 
Hertzian contact and foundation deformations. 

Figure 3. Geometry and Contact Lines 
The slice stiffness Ki can then be expressed 

as 
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where subscript i refers to the slice under 
consideration.  The stiffnesses of all slices on the 
worm and the corresponding ones on the gear can 
therefore be determined. 

5.  FINITE ELEMENT ANALYSIS: 
A displacement type finite element method 

is applied for the analysis of all slices that model 
the worm and gear derive.  Curved, 8 node 2 D 
quadratic elements are used in each slice of the 
worm and gear as shown in Figure (4).  The finite 
element grid shown in the figure was generated 
automatically including the element numbering, 
the definition of element topology, the calculation 
of nodal coordinates, and the specification of 
boundary conditions.  The numbers and sizes of 
elements can be arbitrarily chosen in the main 
directions and in different regions of the worm and 
the gear in order to get finer mesh when required.  
Such a variation of the number and sizes of 
elements also gives the opportunity to investigate 
the convergency of the solution.  Figure (4) shows 
the mapping of worm thread and gear tooth.  In the 
calculations a much finer mesh than that presented 
in the figure is applied. 

Figure 4. Finite Element Grid 

The accurate geometric modeling of the 
tooth profile of both the worm and gear was 
introduced prior to the implementation of the 
Finite Element grid using the criteria presented in 
[6].  The modeling of the entire tooth was then 
exported as an IGES file that is a standard file 
format for graphic exchange.  Then the IGES files 
are imported into the software ANSYS 6.1 [7].  
When the IGES file is retrieved in ANSYS, it is 
usually only a geometric model with the surface 
information.  The preprocessor of ANSYS is used 
to create the element type and choose the material 
property for the analysis. 

6.  RESULTS: 
In this section, we demonstrate an example 

calculated by the program developed using closed 
form solution and Finite Element Analysis. Table 
(1) shows the dimensions of the worm gearing 
which was obtained from [8]. The tooth profile 
was not modified and is assumed free of errors.  
The stiffness variation along tooth flank of the 
worm was calculated from equation (8) and the 
results were compared with those obtained from 
FEA.  The results from the closed form solution 
are given in Figure (5) and were found to be in 
good agreement with those obtained from the FEA.  
It was also found that there exist two teeth in 
simultaneous contact during part of the mesh. 

 
Figure 5. Stiffnes Variation 

7.  CONCLUSIONS: 
In the present study, we have developed a 

program for the accurate calculation of tooth 
stiffness variation along tooth flank of worm gear 
derive.  The results are to be extended for 
calculating load distribution and sharing among 
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meshing teeth.  This will lead to the determination 
of lubrication characteristics and relevant stresses.  
The calculated stiffness variation was compared 
with that obtained from FEA. 

Table 1:  Gear Specifications 

  Worm Wheel 

Module, mm 6.2 
Pressure angle, deg 20 

Lead angle, deg 17.896 
Center distance, mm 125 

Number of teeth,  3 31 
Pitch circle 

diameter, 
mm 57.6 192.4 

Averaged 
diameter, 

mm 57.8 192.2 

Outside diameter, mm 68.0 204.8 
Root diameter, mm 41.2 178.0 

Face width, mm -- 46 

The results obtained are summarized as 
follows: 
1. Tooth stiffness of both worm and gear has a 

high value close to the root and decreases 
gradually towards the top. 

2. Finite Element results agree very well with 
those obtained from the developed program. 

3. The results from the developed program can 
be obtained in a very short time as compared 
to the time required for using FEA. 

4. The developed program can be programmed 
using any computer language such as: 
BASIC, FOTRAN, MATLAB, C, … etc. and 
the results are obtainable almost instantly. 
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