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S u m m a r y 
     An analytical solution for the temperature distribution in wheel/ brake shoe contact is presented. The 
wheel of locomotive or wagon is simultaneously heated by the friction due to wheel/ contact and two 
brake shoe contacts.The analysis was applied to calculate the partition heat coefficients between wheel 
and rail and between wheel and left or right brake shoe. 

These coefficients can be used to calculate the temperatures for wheel/rail contact wheel/ right brake 
shoe and wheel/left brake shoe. The maximum temperature occurs towards nearly exit of heating contact 
for the left or right brake shoe. It is shown that the maximum dimensionless contact temperatures of 
wheel are induced in the brake shoe heating contact. Since the thermal penetration depth is very small, 
thermally induced plastic deformations for wheel are restricted to a very thin surface layer. When the 
brake shoes haven’t similarly efficiency (unequal friction), the temperature field of the wheel is modified 
and the temperature of the best efficiently brake shoe   increases. 
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1. INTRODUCTION 
The frictional heat is generated when two 

bodies slide against each other with a relative 
speed and a contact pressure. This frictional heat is 
generated at sliding or rolling interface of 
wheel/brake shoe contact and wheel/rail contact. 

The thermal aspect around the contact 
region can be studied by examining the heat 
transfer between stationary break shoe and a 
moving body (relative to the heat source).  The slip 
between wheel and braking system causes friction 
heating of both bodies. When a brake is working, 
the transformation of kinetic energy of moving 
masses into thermal energy takes place. 

This kinetic energy is dissipated between 
two bodies and appreciably raises their temperature 
at the area of the sliding contact. Two aspects are 
of special importance in this analysis - the nature 
and distribution of heat partition into each body at 
the interface and the resultant temperature fields in 

the two bodies both at the interface and with 
respect to dept. 

While the time for reaching the quasi-
steady-state conditions can be very short for a 
moving body, it can be relatively long for a 
stationary body. 

Thus, it may require a long time to arrive at 
steady-state conditions for sliding. In this case, the 
heat partition fractions for the two bodies may also 
vary for a long time before reaching steady-state 
value. 

While railway wheels are heating by friction 
in the contact patch and in the contact brakes, there 
is also heat loss due to conduction through the 
contact patch into the rail and into brake shoe. A 
literature survey revealed that considerable 
attention has been devoted to the cooling and 
heating of rolling elements. 

Using a quasi-steady-state approach, Ling 
(1970) expressed the temperature solution for a 
cylinder subject to cooling and heating. Patula 
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(1981) provided the solution of the temperature for 
cylinder subject to cooled and heated on parts of its 
surface but insulated on the rest Ulyse and 
Khonsari (1993) used an analytical solution for the 
temperature distribution in a cylinder subject to 
surface heating and no uniform cooling Ertz and 
Knothe (2002) analyzed a comparison of analytical 
and numerical methods for the calculation of 

temperatures in wheel/rail contact. The friction 
heat distribution between a stationary pin and a 
rotating disc was studied by Yevtushenko et. al. 
(1996) and Kar and Bahadur (1981). Tudor and 
Radulescu (2003) analyzed the heat friction 
partition coefficients of wheel contact with rail and 
two brake shoes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Geometry and boundary conditions 
 

In this paper, an analytical solution for the 
friction heat temperature distribution in a wheel 
subject to surface heating by rolling in rail contact 
and subject to two surfaces heating by sliding in 
brake shoes is presented. This also nonuniforming 
cooling is shown. The friction temperature 
distribution is obtained by a Fourier transform 
technique. 

2. THE FRICTION HEAT TRANSFER 
     MODEL OF WHEEL 

The wheel is considered that a short rotating 
cylinder. This wheel, subjected to heating by 
rolling and sliding friction and no uniform 
convective cooling at arbitrary angles (βc) along 
the circumference, is shown in Fig. 1. In this paper, 
we used the model presented in [9]. 

The relative positions of the rail and the bra-
ke shoes will be analyzed by the angular location. 
Heating is assumed be provided by means of rol-
ling friction in the angular (γa) and means of sli-
ding friction in the two intervals γ2 and γ3 (Fig. 1). 

External cooling is assumed to be provided 
by means of airflow convective heat transfer 
(convection coefficient α) in the interval (C1, C2) 
and (C3, C4) and by forced convection heat transfer 

(convection coefficient α+αo) in the interval (C4, 
C5) and (C6, 0) (fig. 1). 

It is used the following dimensionless 
variables 
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The solution of differential equation to accepct the 
boundary conditions will be writing as [9]: 

33o22o11o),( εθ+εθ+εθ=ψρθ                   (2) 

The dimensionless parameter θo1, θo2 and θo3  
are defined in [9]. In order to calculate the 
temperature rise of the disc with the dimensionless 
radius ρ = ρ1 and ρ = 1 using equation (1), the heat 
distribution coefficients (ε1, ε2, ε3) are evaluated by 
Tudor and Radulescu [9]. 
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3. HEAT ROLLING FRICTION 
   TEMPERATURE 

The heat rolling friction distribution 
coefficient (ε1) is the ratio of the amount of heat 
energy flowing into the wheel, as a disc to the total 
heat generated at the rolling interface wheel/rail 
contact. 

When wheel and rail are brought into 
contact under the action of the static wheel load, 
the area of contact and the pressure distribution are 
usually calculated with the Hertz’s theory. If a 
tangential force T is transmitted between wheel 
and rail, there is always a mean relative velocity in 
the contact point. Sliding occurs within the whole 
contact area and the tangential force is T = µNw 
(Nw – wheel load). 

The contact patch moves with respect to the 
wheel surface and the friction heating within the 
contact patch is a time dependent heat source (Fig. 
2). 

With the typical values for wheel/rail 
contact, aH ≅ 5 mm, ar = 14,2⋅10-6 m2/s and vo=26 
m/s, one gets L = 4584. In this case, the 
longitudinal and lateral heat conduction (x – and y 
– direction), can, therefore, be neglected and heat 
conduction equation is [8] 
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Thus, Tr represents the temperature rail rise 

due to the heat supply within the contact patch. 
Since the heat flew is one-dimensional, this 

problem is similar to a semi-infinite solid with an 
arbitrarily distributed heat source q1(t) applied to 
the surface z = 0 at t ≥ 0. The solution Tr(z,t) has to 
fulfil the differential equation (3), the initial 
condition 
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and the boundary condition 
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The solution of this problem can be found in 
the book of Carslaw and Jaeger, 
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The points on the surface of wheel and rail 

pass through the contact patch at different speeds 
due to the sliding velocity. 

The largest heat flux and the highest 
temperatures recur the major hertzian axis which is 
parallel to the rolling direction at y=0. It is 
meaningful to substitute the time t elapsed since 
entering the contact patch with the current position 
x in a coordinate system fixed to the contact patch 
(Fig. 2) 
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With the dimensionless coordinates 
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The analytical solution of the integral in 
equation (8) is quite simple if we assume a 
constant heat flow rate q1r at the rail surface within 
the contact patch. 

The frictional power dissipation rate in 
rolling contact patch is proportional to the 
pressures, the coefficient of friction µ and the 
sliding velocity as can be considered constant 
values: 

2
aosazsa1 x1pv)x(pv)x(q −µ=µ=           (9) 

The average heat flow at the surface 
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It is generally assumed that the frictional 

power dissipation is transformed in heat. With the 
heat partition factor ε1, this can be written as 

)x(q)1()x(q a11ar1 ε−=  for rail  

 and )x(q)x(q a11aw1 ε=  for wheel           (11) 
The maximum temperature occurs at the 

trailing edge of the contact patch. 
For this case, dimensionless temperature of 

disc surface is 
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The part of the rolling frictional heating (ε1) that 
flows into wheel can be defined with equations (2) 
and (12): 

r1r1 CC),1( ε−=βθ                     (13) 
The angle β1 = γ1 = 2 asin (aH/R). 

For example, the normal conditions of 
wheel/rail contact are wheel load Fn= 100 kN, 
wheel radius R= 0,5 m, vehicle speed vo= 26 m/s, 
sliding velocity (longitudinal), vs= 1 m/s, semi-
axis of the contact ellipse in rolling direction aH = 
5,88 mm. In this case β1  = γ1 = 0,024 rad. 

4. HEAT SLIDING FRICTION 
   TEMPERATURE DISTRIBUTION  

Considering the heat transfer by condition 
along the length of the brake shoe and by 
convection from the periphery (Fig. 3), the 
differential equation for the temperature distribu-
tion at any axis distance z is given 
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where λb is thermal conductivity of the brake shoe 
material, T the temperature in the brake shoe at any 
axial distance z, To the ambient temperature and, 
αb the heat transfer coefficient for the brake shoe, 
pb, Ab the perimeter and cross-sectional area of the 
brake shoe. 

Substituting Tb=T-To and mb=(αbpb/λbAb)1/2, 
the general solution of equation (14) is given by 
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b

bb BeAeT −+= , A and B are the constants 
which are defined by boundary conditions. 
With the boundary conditions 
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the solution of equation (14) becomes: 
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The sliding frictional power dissipation rate 

in the contact patch of wheel and brake shoe is 

proportional to the pressure )x(pvq bob2 µ= . 

We assume that friction coefficient (µb) and 
pressure pb(x) are constants and that all the 
frictional power dissipation is transformed in heat. 

Using equations (18) and (16) can be 
calculated the surface brake shoe temperature 
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Dimensionless temperature of brake shoe surface 
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Fig.3. Co-ordinate system for temperature 
calculation in wheel/brake shoe contact 

The partition coefficient ε2 will be calculated 
with equations (19) and (2) 
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It is generally assumed that every wheel has 
two brake shoes. The relative position is defined 
by the angles β2, β3, γ2 and γ3 for the left (b2) and 
right brake shoe (b3) (Fig. 4). 

The partition heat coefficient for every brake 
shoe (ε2 and ε3) are calculated by conditions that 
the temperature for the wheel and rail, left brake 
shoe and right brake shoe are respectively equal. 
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5. STEADY-STATE WHEEL 
    TEMPERATURE 

The bulk temperature of the wheel increases 
with time due to continuous frictional heating on 
its rolling surface.  
Therefore, the temperatures of wheel and rail are 
different when a point on the surface of the wheel 
comes into in the area of contact again. This gives 
rise to a considerable heat flow from the hot wheel 
into the cold rail due to conduction through the 
contact patch. 
 
 
 
 

 

 

 

 

 

 
Fig.4. Relative position of heat sources 

Outside the area of contract, frictional heat 
flows from the wheel into ambient air by 
convection at the free surfaces. 

During the very short time period that every 
point on the surface is in rolling contact, he 
thermal penetration depth is very small compared 
to the size of the contact patch. With the boundary 
conditions, the wheel it is considered as a central 
disc and a thin annulus. This thin annulus of the 
disc is affected by temperature oscillation. 

The dimensionless temperature of the central 
disc 
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(21) 
6. RESULTS AND DISCUSSION 

The dimensionless wheel surface tempe-
rature θ(1,ψ) as the angular location is shown in 
the fig. 5 for different values of Biot’s number 
(0.2,1,5). 

The local temperature rise around the heat 
sources decreases with increase of the parameter 
Bio. 
On notices that the maximum temperature in Fig. 
5, when the two brake shoes have equals friction 
efficiently, is between wheel and the left brake 
shoes. This can be explained by examining the 
friction thermal history of a material element. A 
point uniformly heated by the heat sources 
increases its temperature significantly to reach a 
maximum at the end of the heating wits. 

Fig.5. Surface wheel temperature 

This point is then cooled as the results of 
convective cooling as well as circumferential and 
radial heat conduction. 

Figure 6 presents the temperature profile for 
the case where the brake shoes haven’t similarly 
efficiency. The negative values of the dimensi-
onless temperatures show that cooling by convec-
tion is higher than the rolling friction heating. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 6. Surface wheel temperature 
The cooling and heating less affect points 

inside the wheel. For this cyclically steady-state 
problem, due to the length of time needed for the 
heat to be conducted into the inner layers, the 
maximum temperatures at interior locations are 
always shifted in the direction of rotation. 
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The data in Table 1 are usual operating 
conditions of European locomotives and wagons at 
the low and high speed or carriages at the low 
speed [8]. The maximum temperatures are 
evaluated for these conditions. 

7. CONCLUSIONS 
 An analytical solution is presented for the 
temperature distribution of rotating wheel 
(cylinder) subjected to no uniform cooling and 
three uniform friction heating. 

The analysis was applied to calculate the 
partition heat coefficients between wheel and rail 
and between wheel and left or right brake shoe. 

These coefficients can be used to calculate 
the temperatures for wheel/rail contact wheel/ right 
brake shoe and wheel/left brake shoe. 

The maximum temperature occurs towards 
nearly exit of heating contact for the left or right 
brake shoe. 

It is shown that the maximum dimensionless 
contact temperatures of wheel are induced in the 
brake shoe heating contact. Since the thermal 
penetration depth is very small, thermally induced 
plastic deformations for wheel are restricted to a 
very thin surface layer. 

When the brake shoes haven’t  similary 
efficiency (inequal friction), the temperature field 
of the wheel is modified and the temperature of the 
best efficiently brake shoe   increases. 
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Table  1 
 Units Low speed High speed 
Normal load [8] Fn   (kN) 100 100 
Vehicle speed [8] vo   (m/s) 30 90 
Sliding velocity (longitudinal) [8] vs   (m/s) 1 3 
Coeficient of friction 
-in wheel / rail contact 
-in brake shoe 

µ  
0.3 

0.15 

 
0.1 
0.1 

Normal load on brake shoe Fbs  (N) 2230 2230 
Frictional rolling power dissipation [8] Pfriction  (kW) 30 30 
Frictional sliding power in brake shoe Pfb  (kW) 10 20 
Geometry of brake shoe 
  

- transversal section area 
(m2) 

- perimeter  (m) 
- wheel contact area  (m2) 

0.0048 
 

0.656 
0.02 

0.0048 
 

0.656 
0.02 

Maximum temperature for: 
-left brake shoe 
-right brake shoe 
-rolling rail contact  

 
oC 

 
445 
383 
158 

 
703 
656 
271 


