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Abstract 
The most popular friction law in metal forming applications is Tresca’s law which postulates 

that the friction stress is equal to a portion of the local shear yield stress. The friction factor 
involved in this law should be found from experiment. A typical test for this purpose is the ring 
compression test. The test must be supplemented with a theoretical analysis. The latter is often 
based on upper bound solutions. There are several difficulties with the interpretation of test 
results. The distribution of the friction factor over the surface is not uniform, though it is 
assumed to be uniform in the theoretical analyses. It is very difficult (or even impossible) to 
minimize this non-uniformity to a reasonable level in experiment. It is rather necessary to 
develop theoretical techniques to account for it in inverse problems where the frictional 
boundary condition should be obtained as a result of the theoretical analysis and experimental 
data. Another difficulty is that sticking can occur on a part of the friction surface. This actually 
happens in ring compression tests, and usually is not accounted for in theoretical analyses. This 
difficulty is specific to the ring compression test (and other similar tests) and can be overcome 
by selecting an appropriate test. Such a test is proposed in the present paper. Dies have the 
form of a cone. The specimen is a pre-shaped hollow cylinder such that the die exactly fits the 
cavity made at each cylinder face. The new test reduces to the ring compression test in a limit. 
The cone angle should be chosen such that no sticking occurs. In the paper, an upper bound 
solution is proposed to supplement experimental data. Using this solution, conclusions are 
drawn on the applicability of the test for determining the friction factor. 
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INTRODUCTION 
 

In the context of plastic forming, contact 
friction represents the resistance to the relative 
movement of specimen material along the 
contact surface of the tool. This, in principle, has 
negative impact on the forming process – 
causing increase of forming load and 
deformation work, increase unhomogeneity of 
stress and strain distribution in specimens, 
decrease of material formability, increase of tool 
wear and shortening of its operating life. Rolling 
is the only process where contact friction has  

 

 
positive effects, as it facilitates introduction of 
material into the deformation zone. 

In the plastic forming technology, the nature 
of friction is substantially different to that of the 
conventional mechanical assemblies, primarily 
due to much higher pressure – which, in plastic 
forming, can amount to 2.500 MPa. This is why 
different laws of friction apply in plastic 
forming technology [1]. 

Although, in some cases without the real 
justification, Coulomb friction law is applied in 
bulk forming technologies, as well as in metal 
sheet forming processes. According to this law, 
there exists a proportionality between the 
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normal contact stress ( nσ ) and the friction 
coefficient (µ): 

k nτ µ σ= ⋅  (1) 

This law is applied in processes of cold forming 
where the normal stress ( nσ ) is lower then the 
flow stress (K). 

Tresca’s friction law [1] is applied in cases 
when the normal contact stress is higher then the 
flow stress, i.e. when specimen material has a 
tendency of sticking to the tool surface. In that 
case, the tangential contact stress is proportional 
to the friction factor (m) and the local shear 
stress (τmax): 

maxk mτ τ= ⋅   (2) 

Friction factor is related to friction coefficient 
by 3m µ= ⋅ , where the friction factor ranges 
between 0 1m≤ ≤  and the friction coefficient 
ranges between 0 1/ 3µ≤ ≤ . 

For the processes of rolling, wire drawing 
and deep drawing as well as for the processes of 
ironing, dimpling and expanding, the following 
friction law is applied:  

k Kτ µ= ⋅  (3) 

assuming that the normal contact stress is lower 
than the flow stress. 

The lessening of the negative friction impact 
in plastic forming technology is performed by 
lubrication, using special means and methods, 
without which the practical application of some 
technologies (e.g. cold extrusion) would be 
impossible. 

Various theoretical and experimental 
methods are used for determination of the 
friction coefficient (µ), i.e. friction factor (m). J. 
Scheya’s book [1] reviews the methods for 
determination of friction forces and friction 
coefficient for various processes of bulk and 
sheet metal forming. Methodology for contact 
friction determination is based on measurement 
of process parameters and calculation of 
tangential contact stress, i.e. friction coefficient, 
based on the theoretical background of the 
process in hand.  

For the processes of rolling, wire drawing 
and extrusion, determination of friction 
coefficient is based on the measurement of the 
total load and friction force, that is, on the 
measurement of normal and tangential contact 
stress using special tools, i.e. tools with built-in 

sensors. These processes often require 
application of a special pin load cell to measure 
contact stress and friction coefficient. 

 According to [1], friction coefficient and 
friction factor for upsetting and cold and warm 
forging are determined using the following 
methods: cylinder upsetting by flat plates, 
cylinder upsetting by conical-convex tools, plate 
upsetting by flat tools in plane strain condition, 
pin load cell method and ring upsetting method.  

The method of pin load cell relies on 
measuring the normal and tangential contact 
stress in a small area, which is used to calculate 
the friction coefficient. This method requires 
highly sensitive measuring devices to be built 
into the tool. The contact stress is, via pin 
transferred to the electronic dynamometer, 
which enables measurement of contact stress 
during forming. Determination of contact 
friction requires at least two, i.e. three pin load 
cell measuring instruments, depending on the 
stress-strain state in the specimen. Paper [3] 
documents the process of contact friction 
coefficient determination in prismatic specimen 
upsetting with cylindrical tools. In the upper 
tool, the pin load cell is placed in the radial 
direction, while in the lower tool, it is offset 300 
relative to the radial direction, which enables 
determination of normal and tangential contact 
stress and the friction coefficient. The rotation 
of cylindrical tools prior to the beginning of the 
forming process, allows the position of the pin 
load cells to be changed, thus allowing contact 
stresses to be measured along the whole contact 
area. Illustrated in paper [4] is the method for 
determination of friction coefficient for warm 
forming. A measuring system with three pin 
load cells is used, where the pins are insulated 
from the electronic dynamometer by a 
zirconium rod, in order to prevent the heat 
transfer to the dynamometer. In this way, the 
measuring accuracy of the friction coefficient is 
unaffected by the thermal influence. Special 
problem with the method of pin load cell 
represent the calibration of the measuring 
system and the impact of clearance between the 
pin and its housing on the measuring accuracy. 
The measuring result is also affected by the 
starting position of the pin load cell relative to 
the tool contact surface. 

One of the most frequently used methods for 
determining friction factor and coefficient of 
friction in cold and warm bulk forming, is the 
method of ring upsetting. Kunogi first 
introduced this method for cold forming 
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processes, while it was later improved by Male 
and Conckroft for warm bulk forming [5]. The 
method is based on monitoring changes in ring 
geometry as compared to the calibration 
diagram, which represents the ratio between 
strains of the inner ring diameter and ring height 
for various friction coefficients. This method is 
simple to apply, demanding simple specimen 
and tool. Presented in [6] is the analysis of 
influence of initial ring geometry on the 
calibration diagram, which was conducted by 
the upper bound solution [2]. This analysis has 
established that the initial ring dimensions 
influence the flow of material and the form of 
the calibration diagram. However, the friction 
coefficient does not depend on the initial ring 
dimensions, assuming the adequate calibration 
diagram is used. For the purpose of friction 
coefficient determination, it is a common 
practice to use rings whose initial dimension 
ratio outer diameter:inner diameter:height is 
6:3:2, respectively. For different classes of 
materials the test has been extended in [7, 8]. 

Presented in this paper are the theoretical 
foundations of shear coefficient determination, 
using method of ring upsetting by conical tools. 
The main purpose of the theoretical solution is 
determine such process parameters that no 
sticking zone occurs. 

 
STATEMENT OF THE PROBLEM 
 

The geometry of the process, the cylindrical 
coordinate system r, ϕ, z and the special 
coordinate system ρ, ϕ, θ are illustrated in Fig. 
1. A quarter of the specimen gross-section is 
shown. A hollow cylinder compressed between 
two conical dies moving along the z axis with a 
velocity U. The geometry of the specimen is 
completely determined by the following four 
parameters: h, H, R0 and R (Fig. 1). Then, it 
follows from geometrical considerations that 

0

tan H h
R R

α −
=

−
  and    0cots h Rα= −  (4) 

where α and s are defined in Fig. 1. Owing to 
the symmetry, it is possible to consider a half of 
the specimen at 0z ≥ . The transformation 
equations between the two coordinate systems 
are 

cosr sρ θ= − ,     sinz ρ θ= ,     ϕ ϕ=   (5) 

Using (5) the scale factors for the coordinate 
curves of the system ρ, ϕ, θ can be found in the 
form 

1hρ = ,     hθ ρ= ,     cosh sϕ ρ θ= −   (6) 

Then, the non-zero components of the strain 
rate tensor in the coordinate system ρ, ϕ, θ are 
expressed as 

cos sin
, , (7)

cos

1 1 1,
2

u u u
s

uu u uu

ρ ρ θ
ρρ ϕϕ

ρθ θ θ
θθ ρ ρθ

θ θ
ξ ξ

ρ ρ θ

ξ ξ
ρ θ ρ ρ θ ρ

∂ −
= =

∂ −

∂⎛ ⎞∂ ∂⎛ ⎞= + = + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 where uρ  and uθ  are the velocity components 
in the ρ- and θ- directions. The circumferential 
velocity and the strain rate components ρϕξ  and 

θϕξ  vanish due to the axial symmetry. Then, the 
equivalent strain rate for the problem under 
consideration is defined as 

( )2 2 2 22 2
3eq ρρ θθ ϕϕ ρθξ ξ ξ ξ ξ= + + +  (8) 

 
 

Figure 1: Geometry of specimen and 
 coordinate systems 
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The velocity boundary conditions are 

cosu Uθ α= −   (9) 

at θ α=  and  

0uθ =  (10) 

at 0θ = . The stress boundary conditions consist 
of the friction law in the form 

f mkτ =  (11) 

at θ α= , the symmetry condition 

0ρθσ =  (12) 

at 0θ =  and the condition that the surfaces 
0r R=  and r R=  are stress free. Here fτ  is the 

friction stress, k is the shear yield stress, m is the 
friction factor, 0 1m≤ ≤ , ρθσ  is the shear 
stress in the coordinate system ρ, ϕ, θ.  

Taking into account the stress boundary 
conditions the upper bound theorem for rigid 
perfectly/plastic material reads 

( )

( )2

1

max

min

0

2 3

2

eqPU k h h h d d

mk u d

ρ θα

ρ θ ϕ
ρ θ

ρ

ρ θ α
ρ

π ξ ρ θ

π ρ
=

≤

+

∫ ∫

∫
 (13) 

where P is the compression force and uρ  in the 
second integrand should be calculated at θ α= . 
Also, 

( ) ( )0
1 2

0
min max

, ,
cos cos

,
cos cos

R s R s

R s R s

ρ θ ρ θ
θ θ

ρ ρ
α α

+ +
= =

+ +
= =

 (14) 

 
The integrands in (13) can be calculated 

with the use of any kinematically admissible 
velocity field satisfying the velocity boundary 
conditions and the incompressibility equation. 
The latter has the form 

0ρρ θθ ϕϕξ ξ ξ+ + =  (15) 

Kinematically admissible velocity field 
 

Assume the following distribution of the 
velocity component uθ  

cot sinu
U

θ α θ= −  (16) 

In this form, the velocity uθ  satisfies the 
velocity boundary conditions (9) and (10). 
Substituting (7) into (15), with the use of (16), 
results in the following differential equation for 
the velocity uρ  

2cos cot sin
cos

cot cos
0

u u U
s

u U

ρ ρ

ρ

θ α θ
ρ ρ θ

α θ
ρ

∂ +
+

∂ −
−

+ =

 (17) 

The general solution to this equation is 

( )
2 cotcos2 cos

2 cos
u

s
U s

ρ ρ αθ ρ θ ω
ρ θ ρ

⎛ ⎞
= − +⎜ ⎟ −⎝ ⎠

 (18) 

where ω is an arbitrary function of θ. Equations 
(16) and (18) determine a kinematically 
admissible velocity field at any function ( )ω θ . 

The velocity uρ  may vanish at a point nρ ρ=  
of the friction surface, θ α= , which indicates 
that sticking regime can occur. Since 

cos 0sρ θ − >  due to (5), equation (18) gives 

( )2 2cos cos 2 cos 2
cos2n

s sα α ω α α
ρ

α
± −

=  (19) 

In what follows, it is assumed, with no loss 
of generality, that 1R =  and 1U = .  

Because of the symmetry of the problem 
with respect to the plane 0θ = , ( )ω θ  should 
be an even function of its argument. Such a 
choice of this function, when combined with the 
associated flow rule, satisfies the stress 
boundary condition (12). Even though it is not a 
requirement of the upper bound theorem, it is 
better to satisfy this condition to increase the 
accuracy of predictions. A simple function of 
this class is 

0 1 cosa aω θ= +  (20) 

Substituting (20) into (18) it is possible to 
arrive at the kinematically admissible velocity 
field involving two undetermined parameters, 

0a  and 1a . This field can be further substituted 
into equation (13), with the use of (7) and (8), 
giving the right hand side of (13) as a function 
of 0a  and 1a . Then, this function should be 
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minimized with respect to 0a  and 1a  to obtain 
the best upper bound based on the velocity field 
chosen. This minimization has been performed 
numerically. 
 
NUMERICAL RESULTS 
 

To illustrate the theory developed, the 
numerical solution has been obtained assuming 
that 0.7h = , 1H =  and 0 0.5R = . The 
variation of the ratio of the compression force to 
its value in the case of frictionless interface 
( 0m = ) denoted by 0P  with the friction factor 
m is shown in Fig.2.  

 
 

 
 

Figure 2: Variation of compression force  
with the friction factor 

 
It is seen from this figure that the 

compression force slightly increases as the 
friction factor increases. The variation of the 
value of parameters 0a  and 1a  involved in 
equation (20) is depicted in Fig.3.  

 
 

 
 

Figure 3: Variation of parameters a0 and a1 
involved in equation (20) with the friction factor 

Having these values, it is possible to 
calculate nρ  with the use of (19) and (20), and 
the velocity uρ  with the use of (18) and (20). In 

particular, it has been found that minnρ ρ<  at 
0.18m < . It is seen from figures 3 and 4 that 

the curves have a high gradient in the vicinity of 
the point 0.18m = . The tendency of the shape 
of the free surfaces is determined by the velocity 

ru  at the free surfaces. The velocity ru  is 
expressed through the velocities uρ  and uθ  as 

cos sinru u uρ θθ θ= −       (21) 

Using equations (16), (18) and (21) the 
velocity ru  as a function of z has been 
calculated at each free surface for several values 
of the friction factor. These distributions are 
shown in Figs. 4 and 5. 

 
 

 
 

Figure 4: Distribution of the radial velocity 
along z-axis at the free surface r = R 

 
 

 
 

Figure 5: Distribution of the radial velocity 
along z-axis at the free surface r = R0 
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For a better interpretation of experimental 
data, it is advantageous that  minnρ ρ<  since it 
indicates that sliding can occur over the entire 
friction surface. Since the maximum possible 
value of m is 1, it is important to find such 
geometry of the specimen that minnρ ρ<  at 

1m = . Changing the value of h, it has been 
found that the aforementioned condition is 
satisfied at 0.5h < .  

 
CONCLUSIONS 
 

An upper bound theoretical solution for 
compression of a hollow cylinder by conical 
dies has been proposed. It is expected that the 
solution can be used to interpret experimental 
data for determining the friction factor. An 
important feature of this upsetting process, as 
compared with compression between flat dies, is 
that it is possible to find such geometry of the 
specimen that no sticking zone occurs. It seems 
that it is important for determining the friction 
factor. The present solution introduces no rigid 
zone at the friction surface. Therefore, its 
predictions are very approximate and the 
solution, because of its simplicity and, can be 
used as a first approximation for more 
sophisticated solutions. 
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