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To inspect the performance characteristics of journal bearing systems, the presence of transverse and 

longitudinal roughness on journal-bearing surfaces are studied using a proposed neural networks in 

this article. 

 

The proposed network is capable of predict the performance characteristics of the experimental 

system. It can be outlined from the results for both approaches, neural network could be modelled 

journal bearing systems in practical applications. 
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1. INTRODUCTION 

Journal bearings form great majority of 
hydrodynamic bearings used in industry. The 
field of application for journal bearings is 
immense. In journal bearings, the load 
supporting hydrodynamic pressure is very 
important [1]. During hydrodynamic 
lubrication, a pressure field forms in oil layer 
depending on the kinematics of the surface and 
geometrical conditions. It is essential the oil 
film to be convergent in order to form a 
pressure distribution to carry on applied load. 

The hydrodynamic lubrication theory of rough 
surfaces has been studied with considerable 
interest in recent years. This is mainly because, 
all bearing surfaces, are rough to some extent 
and generally the roughness asperity height is 
of the same order as the mean separation 
between the lubricated contacts. Under such 
conditions surface roughness of the bearings 
considerably affects its performance. 

The influence of the roughness parameter and 
the roughness patterns (longitudinal, transverse 
and isotropic) on the steady state and dynamic 
characteristics of hydrodynamic journal 
bearings with rough surfaces has been studied 
by Turaga et al. [2]. It was seen that the 
transverse roughness tended to increase 
significantly load carrying capacity and 
stability with roughness values whereas in the 
case of other roughness patterns the effect was 
seen to be very small.     

Zhang and Qui [3] investigated the effects of 
two-sided purely longitudinal, transverse and 
isotropic surface roughness on the 
hydrodynamic lubrication of dynamically 
loaded journal bearings. They used 
Christensen's stochastic models for 
hydrodynamic lubrication of rough surfaces 
and considered the running in effect on 
roughness height distributions. 

A theoretical study of the influence of 
circumferential, axial and combined surface 
waviness, present in journal bearing liners, on 
the performance of the bearings was presented 
by Rasheed [4]. It was shown that the presence 
of circumferential waviness increases the load 
carrying capacity and decreases the friction 
variable. But the axial waviness was shown to 
always have an adverse effect on the load 

capacity and friction variable. The combined 
waviness was shown to enhance the load 
capacity and friction characteristics.  

In this study, the effects of shaft surface 
texture on the performance of bearing pressure 
and consequently on the load were investigated 
experimentally and theoretically. In order to 
determine the effects of surface texture on the 
capacity of load carriage, the experiments were 
conducted at 18 0C for steel shaft systems with 
different surface textures (Smooth, 
Longitudinal and Transverse). The rotational 
speed was fixed at 1000, 1500 and 2500 rpm. 
The experimental data is employed as training 
and testing data for a proposed artificial neural 
network.  

2. EXPERIMENTAL SYSTEM   

The journal bearing test rig is described in 
Figure 1. In this section essentially consists of 
a clear perspex journal bearing assembled 
freely on a steel journal shaft (A). The large 
diameter journal shaft is directly fixed onto a 
motor shaft (B). The standard equipment 
control unit controls the speed of the motor 
shaft. With this system a speed range of 
between 500-3000 rev/min can be obtained. 

 

 

 

Figure 1: Journal bearing test rig  

A

B

OIL FROM 
RESERVOIR

OIL FROM 
RESERVOIR

11

E

C
5 4 23 1

D

F

G

J

12

13

11

H

10

9

14

15

16

21 543

8

7

6

 



 

 346

The journal bearing (C) has twelve equispaced 
pressure tappings around its circumference and 
four additional pressure tappings along its 
width. The latter four tappings fixed on the 
topside of the bearing are sealed by the flexible 
rubber diaphragm (D) and the other by the 
clear perspex disc and sealing ring (E). A 
cursor (F) fixed to the journal bearing at its 
rear end moves against a single engraved line 
on a fixed frame (G). When the bearing is in its 
normal position, the cursor and frame mark 
because in line. Small weight (H) added to the 
two-rod (J) during the test to maintain the 
bearing in its normal position when taking 
readings. The weights are freely adjustable 
along the rods. Oil film pressures are 
monitored in 16 tubes of 180-cm length. 
Journal bearing parameters are given in Table 
1. 

Table 1. The parameters of the bearing system 

Parameters 
Value 

Diameter of the Journal ( r2 ) 54.80 mm 

Diameter of the bearing ( R2 ) 55 mm 
Effective bearing width 70 mm 
Overall bearing width 80 mm 
Dry weight of bearing width attachment 650 g 
Weight of each movable load 100 g 
Volume of oil carried in bearing 65.5 cm3 
Kinematics viscosity used lubricant 
(Mobil SHC-629-100 0C)  18.3 cSt 

Various rotational speeds (1000, 2000 and 
3000 rpm) were employed. Mobil SHC-629 
synthetic oil was used as lubricant. 

In the experimental study, motor rotation 
direction was selected to be in the clockwise 
and then, the motor was switched on and the 
speed was gradually increased to 1500 rpm. 
After that the speed was reduced from 1500 to 
1000 rpm and the bearing was allowed to settle 
down in ten minutes. The required loads were 
added on to the shaft at the bottom, and then an 
angular displacement was formed in the 
bearing. When the manometer levels were 
settled down, the pressure reading on 16 
manometers were taken. Initially, oil tank was 
fixed 735 mm levels (oil supply head sP  = 735 
mm). 

The pressure, which is constant due to on axial 
direction, indicated by 1, 2,...5 tubes are placed 
along the bearing axis. At the experimental 
work (Figure 1), the masses (H) on the (J) shaft 
can be placed on different positions. The 

pressure values on the journal bearing were 
measured from 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15 and 16 th tubes. The tube number also 
indicates the angles, i.e. 3 (0 and 3600), 6 (300), 
7 (600), 8 (900), 9 (1200), 10 (1500), 11 (1800), 
12 (2100), 13 (2400), 14 (2700), 15 (3000) and 
16 (3300). Pressure values from the tubes 3 (0 
and 3600), 6 (300), 7 (600), 8 (900), 9 (1200), 10 
(1500), 12 (2100), 13 (2400), 14 (2700), 15 
(3000) and 16 (3300) are used to testing data for 
ANNs.  

3. ARTIFICAL NEURAL NETWORKS  

Artificial NN are non-linear mapping systems 
with a structure loosely based on principles 
observed in biological nervous systems. In the 
most general terms, a NN consist of large 
number of simple processors linked by 
weighted connections. It has many inputs (in) 
and one output (out). The connections between 
neurons are realised in the synapses (Figure 2).  

• inputs nxxx ,....., 21   
• weights, bound to the inputs 

nwww ,...21  
• an input function ( )f , which 

calculates the aggregated net input 
• signal U to the neuron (this is usually a 

summation function)    

• an activation (signal) function, which 

calculates the activation 

• level of the neuron: ( )UgO =  

 

 

 

 

Figure 2: The artificial neuron model 

A network is trained so that application of set 
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vectors, while adjusting network weights 
according to a predetermined procedure. 
During training, the network weights gradually 
converge to values such that each input vector 
produces the desired output vector. The 
proposed neural network was trained with 
Quick propagation algorithm [5]. The 
activation (transfer) functions are possible for 
each hidden layer and the output layer. In this 
study, the tanh function [6] is used to hidden 
layers and output layers as an activation 
function. Linear function [7] is taken for input 
layer.  

The structural and training parameters of the 
proposed network are given in Table 2. 
Moreover, average Rms errors for used 
training algorithm is shown in Table 3.   

Table 2 The structural and training parameters 
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Table 3 Average and maximum Rms error for 

training algorithm used 

  
Average RMS (%) 

 
Case 1 0.0875 
Case 2 0.1125 
Case 3 0.0432 
Case 4 0.0708 
Case 5 0.0360 
Case 6 0.0589 
Case 7 0.0386 
Case 8 0.0974  

 
4. EXPERIMENTAL AND SIMULATION 
    RESULTS 
 
The bearing, which has a weight of 650 g, was 
run unloaded (only bearing weight) and 
loadings of 200 g each on the front and back 
loading rods, respectively (Figure 3).        

The surface texture of the shaft with 
longitudinal profile is seen in Figure 3. Figure 
4 (a) (Case 1) and (b) (Case 2) shows the 
variations of pressure differences versus the 

angular position for Mobil SHC-629 lubricant 
and as the loads of 650 g (bearing load) and 
650 g + 400 g were applied, respectively.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3: The surface texture of longitudinal shaft  

In the Figure 4 (a), the measured pressure 
difference values on the 3, 6, 7, 12, 13, 14 and 
15 pressure tubes were positive since the 
narrower oil wedge was between 00 and 900, 
and between 240-3300. The other pressure 
differences values on the tubes 8, 9, 10, 11 thus 
between 120-2100 were negative. In these 
regions, since the narrowing oil wedge does 
not form, a negative pressure occurs.  

On the contrary, in the positive pressure 
regions the pressure increases up to 3670 pa 
for an angular velocity of 1000 rpm and 300 
angular position. At this angular position, the 
minimum positive pressure difference is 2796 
pa at 2500 rpm. Moreover, in this region 
corresponding to minimum oil film, the 
pressure differences are decreased with 
increasing revolutions.   

Loss of pressure difference, ∆P, with 
increasing rpm is 874 pa. A loss of 23 % in 
pressure and hence in the load carrying 
capacity of the bearing was detected. In order 
to achieve a maximum pressure, the angular 
velocity of the shaft should be kept at 1000 
rpm. 

In the Figure 4 (b), the maximum pressure 
difference was fixed at 300 angular position. Its 
value was fixed at 5637 pa. The minimum 
positive pressure difference at the angular 
position of 300 is 3539 pa at 2500 rpm. When 
rpm rises to 2500 from 1000, the loss in the 
pressure difference loss is 37 %. P∆  is also 
decreased with increasing revolutions. The 
pressure difference levels are increased with 
increasing bearing load.     
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In case 1 and case 2, neural network predictor 
consisted of one input neurone, ten hidden 
layer neurones, three output neurones with 
(tanh) non-linear activation function. Network 
has good performance to predict such systems 
with all kinds of working conditions. 

The shaft surface texture with transverse 
profile is presented in Figure 5. Figure 6 (a) 
(Case 3) shows the results of experimental and 
neural network assuming the variation of 
pressures with the transverse surface profile, at 
various angular positions and velocities with 
650 g bearing load.  

 

 

 

 

 

 

 

Figure 5: The surface texture of transverse shaft 

Figure 6 (b) (Case 4) shows the pressure 
variations with the same shaft profile, at 
various speeds with 650 + 400 g load. The 
pressure differences values are 3889 pa (1000 
rpm), 4195 pa (1500 rpm) and 3496 pa (2500 
rpm) at 300.  

 

 

When the revolution is increased to 1500 from 
1000, the positive pressure difference is 
increased, but this pressure differences 
decreased between 1500-2500 rpm. The loss in 
the pressure difference loss is about 10 %. The 
designated neural predictor has also superior 
performance for modelling of the system. 

Maximum positive difference of pressure 
occurs at the angular position of 300, at 1500 
rpm and it is 2796 pa (Figure 6 (a)).  

The minimum positive pressure difference at 
this position is 2665 pa at 2500 rpm. When 
rpm rises to 2500 from 1000, the loss in the 
pressure difference loss is about 4 %. 

An additional shaft with smooth surface has 
also been used in order to test the effect of the 
surface texture of the shaft on the load-
carrying capacity ( mRt µ0.6= ).  

Figure 7 (a) (Case 5) and (b) (Case 6) shows 
the variation of pressure differences versus the 
angular position for Mobil SHC-629 lubricant 
and as the loads of 650 g and 650+ 400 g were 
applied, respectively. In the Figure 7 (a), the 
pressure difference values were positive at the 
angular positions of 00, 300, 600, 900, 2700, 
3000 and 3300 corresponding to narrowing oil 
wedge region. The other pressures zones are 
negative. The maximum pressure difference is 
the velocity of 1000 rpm and 300 position 
(3190 pa). Minimum difference of pressure 
was found to be 2578 pa at this angular 
position and at 2500 rpm. 
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Figure 4: The pressure-angular values variation for experimental and neural network approaches  
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The loss of pressure difference was calculated 
to be 19 %. Figure 7 (a) also shows the results 
of neural network approach. As can be seen 
from this figure, the neural predictor has a high 
performance in designing an exact model of 
the lubricant system. Moreover, the difference 
of pressure is decreased with increasing 
number of revolution.  

 

 

 

 

 

 
As is seen in Figure 8, maximum oil pressure 
occurs at an angular position of 300. Since the 
static pressure is 5880 pa, the maximum 
pressure developing in the oil film when 
longitudinal, transverse and smooth surface 
shafts are run at 1000 rpm are 9550, 8676 and 
9070 pa, respectively.  

As we can see from the results, shaft with 
transverse profile bears the bearing load of 650 
g with an oil pressure of a lower pressure level. 
Therefore, this shaft puts up a more favourable 
performance at lower rpm's. Furthermore, the 
loss of pressure on shaft with transverse profile 
is less when compared with the other shafts (4 
%).
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(a)        (b) 
Figure 6: The pressure-angular values variation for experimental and neural network approaches 

Because of the increasing bearing load, the 
pressure difference values in the Figure 7 (b) 
are higher than those in Figure 7 (a). In this 
figure, the pressure differences are also 
decreased with increasing speed. The 
minimum oil film occurs at 300 angular 
position. The maximum and minimum oil film 
pressures differences at this location are 4151 
pa (1000 rpm) and 3583 pa (2500 rpm). The 
loss of pressure difference was calculated to 
be 13 %.        

Figure 8 (Case 7) shows the pressure 
variations in different angular positions with a 
shaft having transverse, longitudinal profiles 
and smooth surface, 650 g bearing load at 
1000 rpm using an experimental and neural 
network approach. 

The pressure variations in different angular 
positions with a shaft having transverse, 
longitudinal profiles and smooth surface, 650 
+ 400 g load bearing at 1000 rpm using an 
experimental and neural network approach is 
shown in Figure 9 (Case 8).   
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Figure 7: The pressure-angular values variation for experimental and neural network approaches 
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As is seen in Figure 9, the maximum positive 
pressure difference occurs at 300. These values 
are 5637 pa for shaft with longitudinal profile, 
4151 pa for shaft with smooth surface and 
3889 pa for shaft with transverse profile. 
Understandably, shaft with transverse profile 
displays a favourable performance as far as 
load carriage capacity is concerned.  

The error convergence graphs of the case 6 and 
7 are depicted in Figures 10 (a) and (b) during 
the training of the network. 
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The shaft with transverse profile carries the 
total bearing load of 1050 g with an oil 
pressure of a lower pressure level. Thus, 
greater loads can be borne at greater 
pressures when this shaft is used. As can be 
seen in the figure, the neural network 
results exactly follow the experimental 
results. 
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Figure 10: The error convergence graphs for case 6 and 7  

5. CONCLUSIONS 

In this paper, a neural network predictor has 
been employed to analyze of the effects of 
shaft surface profile in hydrodynamic 
lubrication of journal bearing. From the 
experimental and simulation results, neural 
network exactly follows the experimental 
results. Because of that, this kind of neural 
network predictors can be applied on journal 
bearing systems in real applications.  

Figure 8: Pressure variations for different shafts    
for 1000 rpm and 650 g bearing load   
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