

SERBIATRIB '09

11th International Conference on Tribology Belgrade, Serbia, 13 - 15 May 2009

University of Belgrade Faculty of Mechanical Engineering

THE EFFECT AND COMPARISON OF BIODIESEL-DIESEL FUEL ON CRANKCASE OIL, DIESEL ENGINE PERFORMANCE AND EMISSIONS

Levent Yüksek¹, Hakan Kaleli¹, Orkun Özener¹, Berk Özoğuz¹

¹Faculty of Mechanical Engineering, Yildiz Technical University, İstanbul, Turkey

Abstract: Biodiesel is an alternative fuel for Diesel engines made from new/used vegetable oils and animal fats. It is bio-degradable and has lower hydrocarbon emission levels and similar performance characteristics compared to conventional Diesel fuel. After modifying its molecular structure through a transesterification process, biodiesel (rapeseed oil methyl ester-RME) can be used as an alternative fuel on compression ignition engines without any modification.

Modern internal combustion engines must have longer oil drain periods to decrease operating costs and environmental pollution levels. Related studies indicate that biodiesel fuel has a potential for reducing engine wear. This experimental study investigates the effect of commercial Diesel fuel and RME on lubricating oil performance and the exhaust emissions. Performance, emissions and long-term wear tests were carried out and discussed on a single cylinder marine Diesel engine for both Diesel fuel and 100% RME. Results indicated that the RME has a deteriorating effect on lubricating oil performance by decreasing oil viscosity degree and base number. Ferrous element is the main evidence of the engine wear and it was increased depending on lowering viscosity relating to the fuel dilution and rising running period. Although carbon monoxide and hydrocarbon pollutants in exhaust gas decreased with RME, nitric oxides raised significantly as well as performance results remained similar except from specific fuel consumption.

Keywords: Biodiesel, lubrication oil, wear elements, exhaust emissions

1. INTRODUCTION

Internal combustion engines are the pioneer energy conversion machines. Idea of operating compression ignition (Diesel) engine with a renewable source of energy can contribute to solution of environmental problems and operation costs. [1]

Vegetable oils are promising alternative energy sources for compression ignition engines depending on their high heat content and similar combustion related properties with respect to Diesel fuel. Although vegetable oils create various long-term problems on engine components and wear such as ring sticking, injector and combustion chamber cooking and forming deposits, insufficient atomization, lubricating oil dilution. Vegetable oil viscosity is significantly higher than Diesel fuel, also volatility and molecular structure different from Diesel fuel [11-13,19]. Fatty acid methyl esters can be produced by modifying the molecular structure of straight vegetable oils, edible and nonedible, recycled waste vegetable oils and animal fat which is commonly called biodiesel. Chemical processes such as transesterification, supercritical, catalyst-free process etc. can be applied to vegetable oils to change its fluid properties [2-4]. Biodiesel does not require any changes in the fuel distribution infrastructure and can be used as blends with petro-Diesel or neat (100%) form. EN 14214 and ASTM D6751 standards are described the specifications of biodiesel fuel.

The heating value of biodiesel is lower (approx. 10%) than conventional Diesel fuel that results higher brake specific fuel consumption (BSFC). Harmful emissions from combustion of Diesel fuel are tending to decrease with biodiesel. The nitric oxide (NO_x) emissions are increasing because of advancing phenomenon of the injection start that originates from the physical properties of the

biodiesel. The total hydrocarbon (THC) and carbon monoxide (CO) emissions are tend to decrease because of the oxygen content and the enhanced cetane number of biodiesel fuel which helps for a more complete combustion [5-10].

Engine Lubricating oil is designed to; facilitate enough oil film layer between sliding surfaces, protect engine parts from corrosion, transfer the combustion heat from surfaces and reduce total wear and friction of the engine. Wear of the engine parts is the main limiter of the lifetime of an engine. One can easily indicates the wear rate of engine with determining presence of a metallic element in a used oil sample by using appropriate technique for instance atomic absorption spectrometry. However, a certain amount of wear metals (also known as trace metals) in used oil is expected because of normal engine wear. In every internal combustion engine, there will be a certain amount of unburned fuel or the products from complete and incomplete combustion of fuel that passes through the piston rings and cylinder finally goes into the lubricating oil. Abnormal fuel dilution in engine oil which is the evidence of fuel delivery system malfunction, that results thinning of oil also small amount of fuel dilution increase oxidation hence oil viscosity increases more than normal rates. Biodiesel requires approx. 50°C higher temperature to vaporize when compared to equal mass of Diesel fuel so evaporation of biodiesel fuel in engine oil is relatively small [13].

The aim of this study is to investigate the effect of biodiesel on engine performance, exhaust emissions and wear. An experimental performance and durability tests were carried on a single cylinder Diesel engine. EN590 convenient Diesel fuel and EN14214 convenient rapeseed methyl ester were used as fuels.

2. EXPERIMENTAL SETUP

The tests were carried out on a single cylinder, four strokes, swirl chamber, air cooled marine type Diesel engine. Table 1 shows engine specifications and figure 1 shows the scheme and image of test bench.

Table 1. Technical specifications of test engine

^	<u>Q</u>
Engine Manufacturer	Hatz Diesel Co. Germany
Model	E673 LHK
Туре	4-stroke air-cooled Diesel
Aspiration	Naturally aspirated
Number of cylinders	1
Bore x Stroke (mm)	73x67
Cylinder Volume (cm ³)	280
Compression ratio	19:1
Lub. oil capacity max/min (l)	1.0 / 0.35
Speed range Min-Max (rpm)	1000-3300
Fuel injection pressure (bar)	134
Rated power DIN ISO 3046 (kW)	4
	•

Test bench were manufactured by Megatech Corporation and model description is MEG310 [18]. Performance and emissions test were performed via varying the load from control panel. During long-term durability tests, engine operated at 1910 rpm corresponding to approx. 85% of full load, this load point were determined by considering the stable operation of engine. Engine test conditions are shown in table 2.

В

Fable	2.	Engine	test conditions	
		Linging	tost conditions	

Speed (rev/min)	1910
Load %	86%
Lubricating oil temprature °C	87°C
Ambient temprature °C	24°C
Duration (h)	150

An EN 14214 convenient rapeseed methyl ester (RME) and EN590 mineral Diesel fuel used as test fuels, specifications of both fuels are shown in table 3 and table 4. Infrared method was implemented to measure exhaust gas emissions, Bilsa Ltd. Company MOD2210 type of gas analyzer is used for this purpose [19]. Smoke measurements were made with Bosch BEA 370 smoke meter.

Fable 3. S	pecifications	of rapeseed	oil methyl ester
-------------------	---------------	-------------	------------------

1		1		2	
Specification	Result	Method	Min	Max	Unit
Ester content	99,3	EN14103	96,5		% (m/m)
Specific gravity 15°C	882	EN ISO 12185	860	900	kg/m3
Viscosity 40°C	4,83	EN ISO 3104	3,5	5	mm2/s
Flash Point	178,5	EN ISO 3679	120		°C
Cold filter plug. point	-15	EN 116			°C
Sulphur content	7,46	EN ISO 20884		10	mg/kg
Carbon residue(%10)	0,25	EN ISO 10370		0,3	% (m/m)
Cetan index	53	EN ISO 5165	51		
Sulfated ash content	0,01	ISO 3987		0,02	% (m/m)

Water content	51	EN ISO 12937		500	mg/kg
Total contamination	18	EN 12662		24	mg/kg
Copper strip corros.	1.a	EN ISO 2160	Cla	ss 1	
Oxid. stab. 110 °C	11	EN 14112	6		h
Acid Value	0,19	EN 14104		0,5	mg KOH/g
Iodine number	109	EN 14111		120	g Iodine/100 g
Linolenic acid methyl					
ester	7,6	EN 14103		12	% (m/m)
Methanol content	<0,01	EN 14110		0,2	% (m/m)
Free Glycerol	0			0,02	% (m/m)
Monoglyceride content	0,42	EN 14105		0,8	% (m/m)
Diglyceride content	0	EN 14105		0,2	% (m/m)
Triglyceride content	0,01			0,2	% (m/m)
Total Glycerol	0,11			0,25	% (m/m)
Phosphorus content	0,5	EN 14107		10	mg/kg
Alkaline metals I					
(Na+Ka)	<1,5	EN 14108		5	mg/kg
Metals II (Ca+Mg)	1,8	EN 12662		5	mg/kg

Table 4. Specifications of mineral Diesel fuel

Specification	Unit	Test method	Lin	Test	
Specification	Unit	i est metriou	min	max	results
Density 15°C	kg/m3	ASTM D 4052	820	845	838
Flash Point	°C	ASTM D 93	55		66
Water content	mg/kg	ASTM D 6304		200	98
Sulphur content	mg/kg	ASTM D 2622		7000	1471
Copper strip corrosion	3h,50°C	ASTM D 130	Class1		1A
Cetan index	Calc.	ASTM D 4737	46		51,4
Viscosity 40°C	mm ² /s	ASTM D 445	2.0	4,5	2,812

Two main types of tests were applied; these are performance tests (including emissions tests) and engine durability tests. Both of tests were employed for neat biodiesel (B100) which produced from rapeseed methyl ester (RME) and mineral Diesel fuel (D). Durability tests consist 150 hours of operation for each test fuel. Specifications of lubricating oil are listed in table 5.

rubie et specifications et labiteating en						
Specification	Initial values					
SAE Grade	SAE 10W 40					
API service class	API CF, ACEA E4/E7					
TBN	15,6 mgKOH/g					
Viscosity@40°C	85,6 cSt					
Viscosity@100°C	13,1 cSt					
Viscosity index	113					
Flash point	224 °C					
Pour Point	-33 °C					
Specific gravity@15°C	0,871 g/cm3					
Glycol content	0 ppm					
Water content	0 ppm					

Table 5. Specifications of lubricating oil

Test engine was dismantled and cleaned before each test. The first durability test was carried out with Diesel fuel. After 150 hours of operation with Diesel fuel, the lubricant and the oil filter were replaced with the new one, and then engine operated with B100 for 150 hours. Lubricating oil samples were drawn from the engine crankcase with equal intervals of 25 hour. Total crankcase oil quantity was decreased by 100 ml for every sampling period and any top-up wasn't added. Then samples were analyzed by Total company test laboratories.

3. RESULTS

3.1 Performance and emission test results

According to performance test results in figure 2 RME showed similar performance with respect to Diesel fuel but BSFC is increased 6%.

Figure 3. CO emission variation as a function of the engine speed.

Figure 4. Total HC emission variation as a function of the engine speed.

CO and THC emission results are shown in figures 3 and 4, unburned hydrocarbon emission of RME was lower than Diesel fuel but difference between them varied with engine speed. CO emission behaviour of the engine was similar to THC emission.

RME increased NO_x emissions significantly when comparing to Diesel fuel. RME exhaust NO_x quantity almost double of Diesel exhaust at high loads. Smoke opacity trend of RME is opposite with the NO_x which is lower than Diesel fuel. Also smoke opacity and NO_x showed different variation with load, difference obtained from smoke opacity measurements at high load is proportionally smaller than NO_x emission difference.

3.2 Durability test results

After engine run during 150 h period for each fuel at certain load, total wear element data was collected from engine oil is shown in figure 6 according to table 6.

Element (ppm)	F	e	A	1	C	u	Ν	Ji	S	n	(Cr
Operating hour	D	В 100	D	В 100	D	В 100	D	В 100	D	В 100	D	В 100
0	2	2	1	1	<1	<1	<1	<1	<1	<1	<1	<1
25	8	11	3	6	<1	<1	2	<1	<1	2	<1	<1
50	10	20	3	4	<1	1	1	<1	<1	3	<1	1
75	12	21	2	9	<1	1	3	<1	<1	3	1	2
100	10	25	5	7	<1	2	3	<1	<1	3	1	2
125	12	27	3	4	<1	2	3	<1	2	4	2	2
150	15	31	3	3	<1	2	3	<1	2	4	2	3

Table 6. Wear metals results of used lubricating oil

According to figure 6, iron concentration raised from 15 ppm to 31 ppm with RME fuel although aluminium metal concentrations are at equal quantities at the end of the test. On the other hand, lead element quantities in wear debris were very small and neglected. RME fuelled test oil were containing higher copper, tin and chromium.

Figure 6. Quantity of trace metals in used lubricating oil after 150 hours engine operation.

Figure 7 shows the TBN values of used oil as a function of time at the end of RME and Diesel fuel durability tests. TBN reduced with increasing engine operation time also RME fuelled test results showed dramatic decrease with respect to Diesel fuelled test.

Figure 7. Total base number of used lubricating oil as a function of operating time.

Figure 8 shows TAN variation in used lubricating oil as a function of time. Diesel fuel showed considerably lower test results than RME test.

Figure 8. Total acid number of used lubricating oil as a function of operating time.

Fuel dilution in used engine lubricant is shown in figure 9. Dilution percentage of biodiesel in the engine oil, reached up to 3,5% at the end of the 150 hours of test period while Diesel test results remained below the measuring range of the analyzer.

Figure 9. Total percentage of fuel in used lubricating oil as a function of operating time.

Measured viscosities of used lubricating oils are shown in figure 10. Viscosity of oil decreased to the half of the initial value at the end of the RME.

4. DISCUSSIONS

Performance test results indicate that the maximum power obtained from biodiesel almost equal to Diesel fuel. Although power results of biodiesel varied with engine speed, results are lower than Diesel fuel approx. 2%÷9%. Higher BSFC results of biodiesel shown in figure 2, indicates more fuel injection quantity per cycle compared to Diesel fuel. This can be related to heating value of Diesel fuel [8]. Even the test engine was set to constant maximum throttle position; inline fuel injection pump injects more RME than Diesel fuel. This phenomenon can be explained with the specific gravity difference between fuels and pump volumetric efficiency variation. Plunger begins to vaporize the residual fuel on the chamber of pump cylinder when it ends the pumping stroke, lower biodiesel evaporation on pump cylinder surface results higher volumetric efficiency of fuel injection pump, hence an increase of the injected fuel quantity. This situation can be related to higher distillation temperature curve of biodiesel [13].

CO and THC emissions depend on combustion quality of the engine. Lower THC and CO emissions of biodiesel are in harmony with aforementioned studies [6-8]. Soot particles form as combustion products produced by the pyrolysis reaction at high gas temperatures. Formed soot particles can partially or completely oxidize by ambient oxygen. Operating engine with an oxygenated fuel such as biodiesel one can predict the reduced smoke opacity. In figure 5 smoke opacity of engine decreased significantly with RME and varied with load.

Nitrogen-oxide results showed increasing trend when utilizing RME fuel which is in harmony with Labeckas and Slavinskas who determined that the increasing the mass percent of fuel oxygen, increases the NO_x emissions [5]. Boehman and coworkers investigated the NO_x emissions of Diesel fuel, soy-derived biodiesel and GTL. Author related higher NOx emissions of biodiesel to higher bulk moduli of biodiesel fuel (nearly 11%) which results early injection than conventional Diesel fuel. The fuel injection timing advanced with increased biodiesel content hence NO_x emissions of biodiesel, resulted higher values [20].

Piston, piston ring, cylinder liner, bearings, crankshaft, cam, and tappet and valves, valve seats normally wear during operation of the engine. Analyzing the trace metals (Fe, Cr, Cu and Pb) in engine lubricant, sufficient wear data can be collected to estimate overall engine condition. Also this method gives good information about lube oil condition; additive amount of aged oil can monitor affectivity of oil. The wear elements can be related to engine parts such as; iron reflects the cylinder liners, piston rings valves and gear wear, aluminium reflects piston wear, lead and copper and tin reflects bearings and bushing wear, lead reflects bearing wear finally chromium and nickel reflects piston ring wear [22].

Earlier injection phenomenon and higher temperatures can increase distillation wall impingement of biodiesel [13,20]. On the other hand deposit formation on nozzle affect injection parameters, Pehan et. al. investigated the effect of RME utilization on the injection system lubrication and injector discharge coefficient of a six cylinder DI Diesel engine. The discharge coefficient of biodiesel injected used injectors decreased at the end of test sequence [16]. R. Fraer and co-workers examined the wear and durability analysis with B20 fuel on two different types of engines. Authors reported that injector nozzles of first type of engine were not within specified limits with the biodiesel blend and a replacement was required [14].

Excessive iron wear, TBN decrease and TAN increase occurred with biodiesel utilization, these results points out the fuel dilution of lubricating oil shown in figure 9. Fuel dilution is in harmony with W. Baumann and A. Hubmann who carried out long term tests with two stationary engines and rapeseed oil methyl ester as fuel. The content of unburned fuel in the engine oil was increased up to 8% and 10% during the test period of 1000 hours [17,21].

5. CONCLUSIONS

The following conclusions may be drawn from the present study:

1. Rapeseed methyl ester showed similar performance results respect to Diesel fuel. However BSFC of engine increased 6%.

2. Rapeseed methyl ester decreased the CO, THC emissions and smoke opacity of exhaust gas while NO_x emissions increased significantly.

3. After 150 hours of durability test RME fuel affected the lubricating oil which aged faster than Diesel fuel. When comparing to Diesel results, viscosity and TBN results lowered 60% and 29% respectively with biodiesel.

4. Iron content increased more than 100% when using RME fuel instead of Diesel fuel. Also engine oil diluted 3, 5% of biodiesel while no fuel dilution was found with Diesel fuel.

ACKNOWLEDGEMENT

The authors thank Total-Elf Company Analysis laboratory for their assistance in analyzing the oil samples and Trakya Oil Company for providing biodiesel fuel. Special thanks for Fatih Kara for his fastidious study in his Master of Science thesis.

REFERENCES

- World Oil Outlook 2008, OPEC Organization of the Petroleum Exporting Countries, ISBN 978-3-200-01253-0,www.opec.org
- [2] Shiro Saka, Yohei Isayama, A new process for catalyst-free production of biodiesel using supercritical methyl acetate, Fuel 88, pp.1307– 1313, 2009
- [3] Xuezheng Liang, Guozhen Gong, Haihong Wu, Jianguo Yang, Highly efficient procedure for the synthesis of biodiesel from soybean oil, Fuel 88 pp.613–616, 2009
- [4] Lin Lin, Dong Ying, Sumpun Chaitep, Saritporn Vittayapadung, Biodiesel production from crude rice bran oil and properties as fuel, Applied Energy 86, pp. 681–688, 2009
- [5] Gvidonas Labeckas, Stasys Slavinskas, The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions, Energy Conversion and Management 47, pp.1954–1967, 2006
- [6] C.D. Rakopoulos, K.A. Antonopoulos, D.C. Rakopoulos, D.T. Hountalas, E.G. Giakoumis, Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins, Energy Conversion and Management 47, pp.3272–3287, 2006
- [7] Ken Friis Hansen, Michael Grouleff Jensen, Chemical and Biological Characteristics of Exhaust Emissions from a DI Diesel Engine Fuelled With Rapeseed Oil Methyl Ester (RME), Sae Technical Paper No. 971689, 1997
- [8] Magin Lapuerta, Octavio Armas, Jose Rodriguez, Fernandez, Effect of biodiesel fuels on Diesel engine emissions, Progress in Energy and Combustion Science 34, pp.198–223, 2008
- [9] O.M.I. Nwafor, Emission characteristics of Diesel engine operating on rapeseed methyl ester, Renewable Energy 29, pp.119–129, 2004
- [10] A. Tsolakis, A. Megaritis, M.L. Wyszynski, K. Theinnoi, Engine performance and emissions of a Diesel engine operating on Diesel-RME blends with EGR, Energy 32, pp.2072–2080, 2007
- [11] Agarwal A. K., Das L.M., Biodiesel development and characterization for use as a fuel in compression ignition engine. Engineering Gas Turbine Power, 123, pp.440–447, 2001

- [12] Cathy C. Devlin, C. A. Passut, R. L. Campbell and Tze-Chi Jao, Biodiesel Fuel Effect on Diesel Engine Lubrication, SAE Technical Paper No. 2008-01-2375, 2008
- [13] Howard L.Fang, ShawnD.Whitacre, Biodiesel Impact on Wear Protection of Engine Oils, SAE Technical Paper No.2007-01-4141, 2007
- [14] Richard Fraer, Han Dinh, Kenneth Proc, Robert L. McCormick, Kevin Chandler, Bruce Buchholz, Operating Experience and Teardown Analysis for Engines Operated on Biodiesel Blends (B20), SAE Technical Paper No. 2005-01-3641, 2005
- [15] M. Ziejewski, H. J.Goettler, Howard Haines, Chor Huang,EMA Durability Tests on High Oleic Sunflower and Safflower Oils in Diesel Engines,SAE Technical Paper No. 961846, 1996
- [16] Stanislav Pehan, Marta Svoljšak Jerman, Marko Kegl, Breda Kegl, Biodiesel influence on tribology characteristics of a Diesel engine, Fuel 88, pp.970–979, 2009
- [17] Baumann, W., Hubmann, A., Anforderungen: an das Motoröl bei Einsatz vonRapsölmethylester, Symposium Rapsmethylester, Wien, Austria, 1992
- [18] www.megatechcorp.com
- [19] http://www.bilsaltd.com
- [20] James P. Szybist, Stephen R. Kirby, Andre' L. Boehman, NO_x Emissions of Alternative Diesel Fuels: A Comparative Analysis of Biodiesel and FT Diesel, Energy & Fuels, 19, pp.1484-1492, 2005
- [21] Morgan Andreae, Howard Fang, Kirtan Bhandary, Biodiesel and Fuel Dilution of Engine Oil, SAE Technical Paper No. 2007-01-4036, 2007
- [22] A. K. Agarwal, J. Bijwe, L. M. Das, Effect of Biodiesel Utilization of Wear of Vital Parts in Compression Ignition Engine, Transactions of the ASME, Vol. 125, pp.604-611, April 2003

DEFINITIONS, ACRONYMS, ABBREVIATIONS

- B100: Neat Biodiesel
- **BSFC:** Brake Specific Fuel Consumption
- CO: Carbon Monoxide
- D: Diesel Fuel
- **DI:** Direct Injection
- NO_X: Nitric Oxides
- **RME:** Rapeseed Methyl Ester
- TAN: Total Acid Number
- TBN: Total Base Number
- THC: Total Hydrocarbon