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Abstract: The mechanism of wear is very complex and the theoretical treatment without the use of rather 
sweeping simplifications is not possible. The material intrinsic surface properties such as hardness, strength, 
ductility, work hardening etc. are very important factors for wear resistance, but other factors like surface 
finish, lubrication, load, speed, corrosion, temperature and properties of the opposing surface etc. are 
equally important. Robot laser surface-hardening heat treatment is complementary to conventional flame or 
inductive hardening. A high-power laser beam is used to heat a metal surface rapidly and selectively to 
produce hardened case depths of up to 1.5 mm with hardness values of up to 65 HRc. Laser hardening 
involves features, such as non-controlled energy intake, high performance constancy and accurate 
positioning processes. A hard martensitic microstructure provides improved surface properties such as wear 
resistance and high strength. We describe a new technological process of hardening, which can decrease the 
wear of hardened specimens. The new process uses robot laser hardening with an overlapping laser beam. 
First, we hardened specimens using different velocities and temperatures and then repeated the process. In 
addition, we present how the speed and temperature affect the wear in two different processes of robot laser 
hardening. Furthermore, we present the improved results after hardening with the overlap process. To 
analyse the results, we used one method of intelligent system, neural networks and a relationship was 
obtained by using a four-layer neural network. We compare both processes. 
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1. INTRODUCTION  
 

In materials science, wear is erosion or sideways 
displacement of material from its "derivative" and 
original position on a solid surface performed by 
the action of another surface. Wear is related to 
interactions between surfaces and more specifically 
the removal and deformation of material on a 
surface as a result of mechanical action of the 
opposite surface. The need for relative motion 
between two surfaces and initial mechanical contact 
between asperities is an important distinction 
between mechanical wear compared to other 
processes with similar outcomes. 

The definition of wear may include loss of 
dimension from plastic deformation if it is 

originated at the interface between two sliding 
surfaces. 

However, plastic deformation such as yield 
stress is excluded from the wear definition if it 
doesn't incorporates a relative sliding motion and 
contact against another surface despite the 
possibility for material removal, because it then 
lacks the relative sliding action of another surface. 

 
2. MATERIALS AND METHOD 

 
Our study was limited to tool steel of DIN 

standard 1.7225 (Fig. 1). The chemical composition 
of the material contained 0.38% to 0.45% C, 0.4% 
maximum Si, 0.6% to 0.9% Mn, 0.025% maximum 
P, 0.035% maximum S and 0.15% to 0.3% Mo 
[10]. 
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Figure 1. Transverse and longitudinal cross-section of 

hardened specimen 

The specimen test section had a cylindrical form 
of dimension 25 × 10 mm (diameter × height). 
Specimens with porosity of about 19% to 50%, 
were prepared by laser technique, followed by 
hardening at T ∈ [1000, 1400] °C and v ∈ [2, 5] 
mm/s. First, we changed two parameters of the 
robot laser cell: speed v ∈ [2, 5] mm/s with steps of 
1 mm/s and temperature T ∈ [1000, 1400] °C in 
steps of 100 °C (Fig. 2). Secondly, we repeated the 
process (Fig. 3). In addition, we hardened the 
specimens again with equal parameters of the robot 
laser cell. The microstructure of the specimens was 
observed with a field emission scanning electron 
microscope (JSM-7600F, JEOL Ltd.). An irregular 
surface texture was observed with a few breaks, 
which are represented by black islands (Fig. 4). Fig. 
5 presents the boundary between the hardened and 
non-hardened material.  

 
Figure 2. Robot laser hardening with different 

temperature and speed 

 
Figure 3. Repeated process of robot laser hardening 

 
Figure 4. SEM picture of robot laser re-hardened 

specimen 

 
Figure 5. The boundary between work-hardened and 

non-hardened material 

We used the method of determining the porosity 
from SEM images of the microstructure. It is 
known that in a homogenously porous material the 
area of pores is equal to the volume of pores in 
specimens. The SEM pictures were converted to 
binary images (Fig. 6), from which we calculated 
the area of pores of all pictures using the ImageJ 
program (ImageJ is a public domain, Java-based 
image processing program developed at the 
National Institutes of Health). The area of pores on 
each picture of the material was calculated and then 
the arithmetic mean and standard deviation of 
porosity were determined. To analyze he possibility 
of the application of fractal analysis to the heat-
treated surface, we examined the relation between 
the surface porosity and fractal dimensions 
depending on various parameters of the robot laser 
cell. In fractal geometry, the key parameter is the 
fractal dimension D. The relationship between the 
fractal dimension D, volume V and length L, can be 
indicated as follows: 
 

V~LD    (1) 
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Fractal dimensions were determined using the 
box-counting method which has been proven to 
have higher calculation speed and more accuracy 
by Dougan and Shi. 

 
Figure 6. Calculation of fractal dimensions with box-

counting method 

To analyse the results we used one method of 
intelligent system; the neural network. Artificial 
neural networks (ANN) are simulations of 
collections of model biological neurons. A neuron 
operates by receiving signals from other neurons 
through connections called synapses. The 
combination of these signals, in excess of a certain 
threshold or activation level, will result in the 
neuron firing, i.e., sending a signal to another 
neuron to which it is connected. Some signals act as 
excitations and others as inhibitions to a neuron 
firing. What we call thinking is believed to be the 
collective effect of the presence or absence of 
firings in the patterns of synaptic connections 
between neurons. In this context, neural networks 
are not simulations of real neurons, in that they do 
not model the biology, chemistry, or physics of a 
real neuron. However, they do model several 
aspects of the information combination and pattern 
recognition behaviour of real neurons, in a simple 
yet meaningful way. This neural modelling has 
shown incredible capability for emulation, analysis, 
prediction and association. Neural networks can be 
used in a variety of powerful ways: to learn and 
reproduce rules or operations from given examples; 
to analyse and generalise sample facts and to make 
predictions from these; or to memorise 
characteristics and features of given data and to 
match or make associations with new data. Neural 
networks can be used to make strict yes-no 
decisions or to produce more critical, finely valued 
judgments. Neural network technology is combined 
with genetic optimisation technology to facilitate 
the development of optimal neural networks to 
solve modelling problems. Genetic optimisation 
uses an evolution-like process to refine and enhance 

the structure of a neural network until it can model 
the problem in the most efficient way. Neural 
networks are models of biological neural structures. 
The starting point for most neural networks is a 
model neuron, as shown in Fig. 7. This neuron 
consists of multiple inputs and a single output. Each 
input is modified by a weight, which multiplies 
with the input value. 

 
Figure 7. A neuron model  

 
3. RESULT 
 

Graph [1-2] present relationship between 
roughness Ra and hardness in specimens hardened 
at different speeds at 1000 °C with both process. 

 2 mm/s

 3 mm/s

4 mm/s

5 mm/s

0

50

100

150

200

250

55 56 57 58 59 60 61

Hardness

R
o

u
g

h
n

es
s

Experimental data

Fitting curve with neural network

 
Graph 1. Relationship between roughness Ra and 

hardness in specimens hardened at different speeds at 
1000 °C 
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Graph 2. Relationship between roughness Ra and 

hardness in specimens hardened at different speeds at 
1000 °C with process of overlapping 
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4. CONCLUSION  
 
The paper presents using fractal geometry to 

describe the wear of robot laser-hardened 
specimens with overlap. We use the relatively new 
method of fractal geometry to describe the 
complexity of laser-hardened specimens. 
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