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nanocomposites. The influence of filler content, the 
varying dispersibility, the aspect ratio, the specific 
surface area and the functionalisation on the 
composite properties was correlated to the 
identified micro-mechanical mechanisms. The 
results showed that the produced nanocomposites 
have enhanced the strength and stiffness along with 
an increase in fracture toughness. 

Despite the huge amount of experimental data 
available in the literature there are still debatable 
results concerning the elastic property and strength 
of such nanocomposites. This is due to the 
characteristic difficulties inprocessing the CNT 
nanofillers in polymer systems, and thereby a 
reliable theoretical correlation of the experimental 
data is still lacking. This is because the 
reinforcement capability of the CNTs in a 
polymeric matrix will depend on their amount as 
well as on their arrangement within the matrix 
which plays a fundamental role in the load transfer 
mechanism.  

On the other hand, in context with the high 
prices of the CNTs, there is a requirement for 
procedures using small samples of nanocomposites, 
compared to the standard tensile test samples, in 
order to acquire mechanical property data on which 
theoretical predictions can be based. Therefore, 
alternative approaches have been utilised for 
determination of the mechanical properties of 
nanocomposites [7]. Nanoindentation is a simple 
but powerful testing technique, which can provide 
useful information about the mechanical properties 
(such as elastic modulus and hardness) of materials. 
It has been proven that the nanoindentation 
technique is the most accurate method for 
evaluation of the effect of carbon nanotubes on the 
deformation behaviour [8].  

The aim of this work was to investigate the 
mechanical properties of MWCNTpolymer 
composites by nanoindentation. Elastic modulus 
and hardness are the properties measured by the 
nanoindentation technique and these were 
compared by results obtained by uniaxial tensile 
tests as well as with popular arithmetic predictions. 
The morphology of the nanocomposites was 
investigated by using a stereomicroscope and 
scanning electron micrographs.   

 
2. MATERIALS  

 
The epoxy matrix investigated was a low 

strength bisphenol A and epichlorohydrin epoxy 
resin (Epikote 816, Hexion Specialty Chemicals) 
containing an added proportion of Cardura E10P 
(glycidyl ester of neodecanoic acid) as a reactive 
diluent. The hardener was amine curing agent 
(Epikure F205, Hexion Specialty Chemicals). The 

nanofiller used, was multiwall carbon nanotubes 
(MWCNT’s). The carbon nanotubes were used as-
received without any further treatment. 

Epoxy-based nanocomposites were prepared by 
mixing the nanotubes with an appropriate amount 
of the neat epoxy resin using an ultrasonic stirrer 
(Bandelin Electronic GmbH, model HD2200) for 
5min followed by high mechanical mixing. This 
was followed by the addition of the hardener and 
further mechanical mixing. The mixture was 
degassed and then cast into release-agent-coated 
special formed moulds in order to form the plates 
for specimen fabrication. The plates were left to 
cure for 48hours followed by 2 hours post curing at 
90ºC.  As a result, a series of specimens with 
nanofiller contents of 0.5% and 1% by weight were 
obtained. Small specimens of 10x10mm were cut 
from the plates and polished in order to make the 
nanoindentation specimens. 
 
3. EXPERIMENTAL PROCEDURES 

 
3.1 Tensile Tests  

Tensile tests were performed at room 
temperature (23°C) on a Zwick Z010 (Zwick, 
Germany) universal testing machine at a constant 
crosshead speed of 1 mm/min. The measurements 
followed the EN ISO 527 testing standard using 
dumbbell shaped specimens. The specimens having 
a 4 mm thickness were machined from the moulded 
plates using a Computer Numerical Control (CNC) 
milling machine. The overall length of dumbbell 
specimens was 170 mm. The length and width of 
narrow section were 10 and 4 mm, respectively. E-
moduli were calculated within the linear part of the 
stress-strain curves. All presented data corresponds 
to the average of at least five measurements. 

 
3.2 Nanoindentation Testing 

Nanoindentation tests involve the contact of an 
indenter on a material surface and its penetration to 
a specified load or depth. Load is measured as a 
function of penetration depth. Fig. 1 shows the 
typical load and unloading process showing 
parameters characterizing the contact geometry. 
This schematic shows a generic viscoelastic-plastic 
material with the loading OA, and unloading AB´ 
segments. The plastic work done in the 
viscoelastic-plastic case is represented by the area 
W1 (OAB´). The area W2 (ABB´) corresponds to 
the elastic work recovered during the unloading 
segment. In the case of purely elastic material, the 
unloading curve is a straight line (AB) and hr=hmax 
(W2=0). In this case, penetration depth is the 
displacement into the sample starting from its 
surface. Numerous details on the nanoindentation 
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6. CONCLUSION  

 
The nanoindentation technique has been 

successfully utilised in order to study the 
mechanical properties (i.e. hardness and elastic 
modulus) of MWCNT/epoxy nanocomposites.  The 
indentation results revealed that the hardness and 
modulus of the nanocomposites increase with 
higher MWCNT concentrations. The elastic 
modulus data obtained by nanoindentation are 
comparable with those obtained by tensile testing 
when a suitable material calibration is applied.  The 
results verify the capability of the nanointendation 
instrumented technique to characterize the 
mechanical properties of polymer nanocomposites 
using small sample amounts. Elastic modulus 
predictions using the Halpin-Tsai model have 
shown comparable results with the experimental 
data, while the Thorsten and Chou model provided 
good predictions by taking into account the outer 
layer of the nanotubes.  
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