

SERBIATRIB '15

14th International Conference on Tribology

University of Belgrade, Faculty of Mechanical Engineering

Belgrade, Serbia, 13 – 15 May 2015

TRIBOLOGICAL CHARACTERIZATION OF SMOOTH AND ARTIFICIALLY TEXTURED COATED SURFACES USING BLOCK ON RING TESTS

Anastasios ZAVOS¹, Pantelis G. NIKOLAKOPOULOS^{1,*}

¹Machine Design Laboratory, Dept. of Mechanical Engineering and Aeronautics, University of Patras, Greece

*Corresponding author: pnikolak@mech.upatras.gr

Abstract: Tribological behaviour of sliding surfaces under boundary/mixed and fully a lubrication condition is an important aspect of tribo pair design. At the same time, artificially textured surfaces have a worth noted tribological behaviour in piston ring tribology. In this paper experiments performed in a custom made Block on Ring test rig calibrated according to ASTM D2714-94. Smooth and textured species were tested for 30 min experimental time. Thereafter, the block specimens have been treated with a chromium layer of 10 µm thickness. Repeatability tests were performed for the artificially textured and coated samples. The minimum oil thickness was measured using the capacitance method, since the friction coefficient is calculated in the computational manner. The block-ring tribo pair lubricated with Newtonian oil SAE 30. Optical images of the blocks were illustrated after tests. Results show that the textured surfaces improved the oil distribution generated a hydrodynamic lift, since the friction coefficient reduced. Textured coated stainless steel (TCSS) shown a substantial improvement in wear resistance in comparison with the textured stainless steel sample.

Keywords: block on ring test rig, capacitance technique, friction coefficient, minimum oil thickness, chromium layer, rectangular texturing, wear.

1. INTRODUCTION

In recent years, attempts to reduce the friction force between sliding surfaces have been investigated to improve the tribological performance of mechanical parts (such as piston rings, thrust journal bearings etc.). The literature on the friction characteristics of micro-textured surfaces is vast. These studies have shown potential results, such as the load carrying capacity increment in fully flooded conditions using micro dimples in one of the two tribo surfaces. However, the dimples contribution in the boundary/mixed regimes is an ongoing research concerning the piston ring-cylinder friction problem. At the same time, the micro scale surface irregularities and its manufacturing is another challenge for engineering technology.

Ramesh et al. [1] presented an experimental and analytical study for microtextured surface contact. A pin-on-disk test rig was used and a range of pattern was examined. Numerical results reported and compared with the experimental. Furthermore, Mishra et al. [2] discussed the effect of laser surface texture (LST) patterns in air-conditioning compressors. As expected, the type of lubricant oil plays an important role on surface texturing wear. Etsion [3,4] investigated the tribological performance of laser surface texturing (LST) in mechanical substantial several parts. A

reduction of friction observed using a piston ring with surface texturing [4]. Spherical micro dimples examined for different textured positions. Numerical and experimental results obtained and compared showing a good agreement. In the paper by Vladescu et al. [5] a valuable experimental work is obtained for different textured patters and operation conditions. Cavitation contribution was also investigated, which is related to the oil film distribution on the surface textured liner.

Smazalova et al. [6] presented some experimental results on the block on ring device for continuous and discontinuous tests. In their paper the friction coefficient, wear and the contact temperature of the sliding tribo pair were illustrated and discussed. Later on, an important investigation has been done in piston ring-cylinder dry contact using a block on ring test ring by Bihlet et al. [7]. Their work examined different sliding pairs, showing that the ceramic coating on piston ring profile decreases the dry wear while the friction coefficient is maximized. A range of loads was examined and the wear scars of test cylinder liners were measured. Since, the wear situation of the piston ring and cylinder liner estimated through scuffing. More recently, Morales-Espejel et al. [8] determined the influence of lubrication conditions on rolling contact. A numerical model developed and compared with the experimental results showing a good agreement. In fact, the basic surface parameters (such as surface roughness) examined by the authors, hence the friction and wear of sliding moving surfaces can be investigated.

Currently, many numerical and simulation models describe the benefits of micro dimples mechanical components. А 2-D at axisymmetric simulation model of the top piston ring-cylinder contact using microtextures was developed by authors Zavos and Nikolakopoulos [9,10]. Solving the Navier Stokes equations, the basic tribological characteristics (friction, hydrodynamic pressure and oil film thickness) were reported in elastohydrodynamic conditions. Spherical and rectangular micro dimples were examined

for different textured positions showing a substantial friction reduction [9].

The measurement of the oil film thickness using laboratory tests is an important process, in order to predict the friction and wear between mating surfaces. Several methods, such as capacitance, ultrasound and laser induced fluorescence methods, developed by many researchers. Sherrington [11] offered a review article about the methods of oil thickness measurement in the piston-piston ring pack conjunction. From this notable study, it was concluded that the monitor of oil distribution on piston ring profile can assess the oil starvation and the cavitation conditions. Grice et al. [12] described the capacitive technique related to the oil film distribution. The calibration of sensors for this measurement technique included. Mills et al. [13] presented the ultrasound method for the oil film thickness measurement of piston ringcylinder contact. Piezoelectric sensors used along to cylinder liner, and hence the dynamic behaviour of the piston assembly tribo pair evaluated. Additionally, a laser induced fluorescence (LIF) technique was used for oil thickness measurement along to piston ring profile from the authors Dhunput et al. [14]. In practical terms, a test rig was used which simulates the piston ring motion across to cylinder inner liner. Therefore, cavitation conditions were predicted around the piston ring liner using the LIF method.

The objective of the current paper is to measure the friction coefficient and the oil film thickness of sliding surfaces. For this reason, a custom made Block on Ring test rig was used for the experiments that took place in the Machine Design Laboratory of the University of Patras. An aluminium ring and a stainless steel block were examined. A series set of tests has been done for smooth and textured specimens. Afterwards, the artificially textured and coated species were compared to the same operating conditions. Chromium coating was performed using the electrodeposit method. Friction tests were carried out at 5 N for 30 min at 15 °C, using SAE 30 as a lubricant oil. To this point, the capacitance technique applied for the minimum oil film thickness measurement, and hence the friction coefficient has been calculated. Optical images of the blocks illustrated before and after the experimental tests.

2. DESCRIPTION OF EXPERIMENTAL TESTS

2.1 Block on ring set-up

This method describes the procedure for the determination of the friction coefficient of sliding materials using a block on ring test ring. A stationary block specimen is pressed with a constant load ($F_N = 5$ N) against a rotating ring specimen at 90° to the ring's axis of rotation. Friction between the sliding surfaces of the block and ring results in loss of material from both specimens. Figure 1 shows the main function of the block on ring test rig. Tribological characteristics were obtained using a standard test method for friction coefficient measurement according to ASTM D2714-94 (reapproved 2014) [16].

The block was made by stainless steel 307 and the ring was made by an aluminium alloy.

The basic dimensions of block specimens were $B \times L \times d = 50 \times 70 \times 5$ mm and the ring radius was 13 cm. The average roughness (R_a) of the block was measured in 0.8 µm and the relevant ring was measured at 0.1 µm before the experiments. The surface parameters picked up using the mobile roughness measuring instrument HOMMEL TESTER T500.

Similar and repeatable tests were also performed using artificially textured and coated samples. Chromium layer of 10 μ m was achieved from an electro-deposition method. The average roughness parameter of coated specimens was also measured, as $R_a = 0.1 \mu$ m.

2.2 Surface texturing geometry

As it can be obtained, from the introduction section, various forms of surface texturing can be used, since the tribological performance is promoted. In this experimental study a rectangular texturing geometry is taken into account. For the rectangular shape, the parameter W is the textured width; H_d is the rectangular depth; while L_c is the textured cell length. Table 1 shows the numerical dimensions of the dimples.

Table 1. Basic dimensions of rectangular texturinggeometry

Parameters	W	H_{d}	L _c
Rectangular geometry	1000 μm	4 µm	2200 µm

In fact, a partial texture portion was selected according to the literature [3,4,9]. Figure 2 shows the typical dimensions of rectangular shape and its position on the steel block surface. The dimple array patterns were specified using CATIA software. An Electro discharge machining (EDM) oriented in micro drilling was utilized to fabricate a defined square micro dimple array (width 1000 μ m, length 1000 μ m and depth of 4 μ m) on stainless steel (SS) hip prosthesis heads. The dimples density γ is 0.54 as obtained from the

expression $\gamma = \frac{\pi W^2}{4L_c^2}$ of ref. [1].

Figure 2. Schematic of rectangular geometry of micro-dimple by EDM

2.3 Experimental procedure

The specimens were cleaned and dried in order to remove all dirt and foreign matters. The ring was immersed in a pool of lubricant oil. The system was operated at room temperature and atmospheric pressure. The experimental parameters summarized in Table 2.

Test Parameters	Value
Rotational ring velocity	0.35 m/s
Normal load	5 N
Experimental time	30 min
Dynamic viscosity	0.35 Pas
Ambient temperature	15 – 17 °C

Table 2. Experimental parameters

The block-ring system lubricated with Newtonian oil SAE 30. The oil temperature was measured with a thermocouple type K. As follows, the main specifications of the test oil presented in Table 3.

Density	885 kg/m ³
Specific heat	1.985 kJ/kgK
Thermal conductivity	0.143 W/mk
Dynamic viscosity at 15 °C	0.35 Pas

3. OIL FILM AND FRICTION COEFFICIENT

3.1 Oil film thickness and capacitance technique

There are important applications of a fluid film at the rolling motion of a test ring and a flat block. Gears, cams and cylindrical bearings are some interesting examples. A thin oil film that separates the contact surfaces is illustrated in ZOOM A of Figure 3. In this case, the block is stationary and the test ring has a rotational velocity u in the x axis. For a small ratio of x/R, the thickness of the oil h(x, y) can be calculated as:

h(x,y) = $= \begin{cases} h_1 = h_{\min} + \frac{x^2}{2R} \Rightarrow h_1 = h_{\min} \rightarrow \text{smooth case, } x = 0 \text{ (1)} \\ h_2 = h_{\min} + H_d(x,y) \rightarrow \text{textured case} \end{cases}$

where h_{\min} is the minimum oil film and $H_d(x,y)$ is the contribution of rectangular texture amplitude in the position coordinate (x,y). Here, the capacitance sensor located at x = 0, since the minimum oil film h_{\min} measured for smooth cases and sequentially for the textured cases the contribution of the rectangular micro scale irregularities have been taken into account (see ZOOM B of Figure 3).

There are different methods to measure the oil thickness between sliding surfaces. Capacitance measurement [12], ultrasound method [13] and laser induced fluorescence (LIF) concept [14] are some interesting techniques. In this case, the capacitance of a parallel plate capacitor was used. A draft of signal processing from the block ring test rig is presented in Figure 3.

Figure 3. Oil film thickness between the ring and the test block (ZOOM A and ZOOM B). Signal procedure using capacitance method

The basic equations of oil film thickness are presented below:

$$C_{T} = \frac{\varepsilon_{o}\varepsilon_{r}A_{s}}{h(x,y)},$$
 (2)

$$V_{\rm out} = -\frac{V_{\rm osc}C_{\rm osc}}{C_T},$$
 (3)

where C_T is the transducer capacitance, ε_o is the value of the permittivity for air which is 8.84 10^{-12} F/m, ε_r is the relative permittivity (1.8 in oil), A_s is the cross section area of sensor ($A_s = 0.16 \ 10^{-6} \ m^2$), h(x, y) is the oil film thickness, V_{osc} is the oscillator input rms voltage, V_{out} is the output voltage and C_{osc} is the oscillator capacitance ($C_{osc} = 28 \pm 5 \% \ pF$). A sine wave with constant frequency applied, using a wave form generator, as an input in the oscillator. The deviations of input and output voltage were below to $\pm 1 \%$.

Using the combination of the equations (2) and (3), the measured oil film thickness h(x, y) could be defined as:

$$h = h(x, y) = -\frac{V_{\text{out}}\varepsilon_o\varepsilon_r A_s}{V_{\text{osc}}c_{\text{osc}}}.$$
 (4)

Laboratory experimentation remains the only practical method available for the accurate identification of the minimum film thickness for arbitrary material pairs. However, accurate and repeatable minimum film thickness measurement remains challenging due to the dependence of the capacitance of the oil material, surface, environment, and measuring equipment. When reporting any measured quantity, it is also necessary to provide a quantitative statement regarding the quality of the reported value, so that those who need to use the data can have an indication of its reliability. The dispersion of the values that could reasonably be attributed to the measurement uncertainty [15] can be calculated as follows:

$$u_{c}(y) = \sqrt{\sum_{i=1}^{N} \left(\frac{\vartheta f}{\vartheta x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\vartheta f}{\vartheta x_{i}} \frac{\vartheta f}{\vartheta x_{j}} u(x_{i}, x_{j})},$$
(5)

where $u_c(y)$ is the combined standard uncertainty of output estimate, $u^2(x_i)$ is the estimated variance associated with input estimate x_i that estimates input quantity x_i , $u(x_i, x_j)$ is the estimated covariance associated with two input estimates x_i and x_j that estimate input quantities x_i , x_j , and $\frac{\partial f}{\partial x_i}$ is the partial derivative with respect to input quantity x_i of functional relationship f between measurement y and input quantities x_i on which y depends. In equation (5) there is not any correlation between the input parameters, so $u(x_i, x_j) = 0$. Therefore, the expression for the uncertainty of the minimum oil film thickness result is provided by equation (6):

$$u^{2}(h) = \left(\frac{\vartheta h}{\vartheta V_{out}}\right)^{2} u^{2}(V_{out}) + \left(\frac{\vartheta h}{\vartheta V_{osc}}\right)^{2} u^{2}(V_{osc}) + \left(\frac{\vartheta h}{\vartheta C_{osc}}\right)^{2} u^{2}(C_{osc}) \Rightarrow \frac{u(h)}{h} = .$$
 (6)
$$= \sqrt{\left(\frac{u(V_{out})}{V_{out}}\right)^{2} + \left(\frac{u(V_{osc})}{V_{osc}}\right)^{2} + \left(\frac{u(C_{osc})}{C_{osc}}\right)^{2}} \Rightarrow \Rightarrow \frac{u(h)}{h} = 5.19\%$$

Consequently, the combined standard uncertainty of the minimum lubricant film measurement $\frac{u(h)}{h}$ is 5.19 %.

3.2 Calculation of friction coefficient

It is well known that friction is a major problem because it deteriorates the moving surfaces of many mechanical components. The instantaneous coefficient of friction μ is obtained as the ratio of the measured friction force ($F_{\rm fr}$), to the measured normal force ($F_{\rm N}$) as shown in equation (6).

$$\mu = \frac{F_{\rm fr}}{F_{\rm N}} \,. \tag{7}$$

Actually, the friction and the normal force at the contact of moving surfaces are measured separately. In fact, the applied normal force F_N is constant 5 N and the friction force on the block surface can be expressed as:

$$F_{\rm fr} = \begin{cases} \mu_{\rm oil} Au\left(\frac{1}{h_1}\right) \to \text{smooth case} \\ \mu_{\rm oil} Au\left(\frac{1}{h_2}\right) \to \text{textured case} \end{cases}, \quad (8)$$

where μ_{oil} is the dynamic viscosity of monograde oil SAE 30, *A* is the contact area, *u* is the rotational ring velocity and h_1 , h_2 is the measured minimum lubricant thickness for each examined case. Typically, the minimum oil film in the experiments was estimated using the expression (4), and the friction force (*F*_{fr}) is calculated using the expressions (8).

4. RESULTS AND DISCUSSION

4.1 Oil film thickness and friction coefficient

The interface between the block and ring is important for the understanding of elastohydrodynamic conditions on contacting moving surfaces. Surface damage modes can be predicted and examined.

Figure 4a shows the minimum oil film for uncoated and coated stainless steel (SS) spaces under same operation conditions. Each test was 30 min, and the oil film measured using a capacitor sensor. It is evident that using the coated block the lubrication performance is improved 5-28% in comparison with the uncoated stainless steel specimen. In fact, the chromium coated block has a smoother surface $(R_a = 0.1 \ \mu m)$ than those of the stainless steel $(R_a = 0.8 \ \mu m)$. Therefore, as observed in Section A, the minimum oil thickness is substantially increased concerning the stainless steel case. In practical terms, the surface roughness of the stainless steel (SS) is reduced in 0.5 µm as it is from the measured mobile roughness measuring instrument. Hence, the oil film enhanced the hydrodynamic lubrication $(h_1/\sigma > 3)$ between block-ring interface, where h_1 is the minimum lubricant film thickness and σ represents the root mean square surface finish of contacting bodies respectively.

In Figure 4b the oil film distribution is presented when the rectangular textured geometry was examined. Coated and uncoated surfaces were used using a pattern with 100 dimples (Fig. 2). At constant operating mode, the textured samples have larger minimum oil thickness 27 – 40 % compared to untextured sample. This oil film increment can be attributed to the added hydrodynamic lift provided by the dimple pattern. Furthermore, the measured film thickness regarding the textured case has a agreement with the theoretical good expression $H_{\text{eff}} = f(h_{\min}, H_d, W)$ of authors Ramesh et al. [1]. In Table 4, comparisons between the experimental and numerical calculated oil film thickness are presented for the textured stainless steel (TSS) sample.

Table 4. Comparisons of experimental andnumerical lubricant film thickness of TSS case

Measured oil thickness	3.3 μm
Numerical calculated oil film thickness	2.9 μm
Difference	~ 10 %

Therefore, it is important to refer that in the textured stainless steel (TSS) sample the minimum oil film is increased moderate near to 15-30 min of the test duration. In fact, very small debris could be led to oil increment after the experimental test in (SS) space (Fig. 7). At the same time, in the coated textured block has not been identified any wear scar.

In Figure 5 the friction coefficient is illustrated for smooth and textured coated/uncoated specimens under same operating test conditions. The calculation of the friction force under the mixedhydrodynamic lubrication conditions is performed following the expression (8). The normal load $F_N = 5$ N is constant for each examined case.

Surface texturing of the block surface (textured density $\gamma = 54$ %) was done by EDM technique, resulted in significant а improvement of friction performance in comparison with untextured species. In summary, micro-textures work as microbearings, improves the load capacity and increases the oil film thickness, which leads to slighter friction force. In Section B, coated and uncoated textured stainless steel specimens, have similar tribological behaviour, and the stainless textured space is appeared with more scratches on the contact area block-ring (Fig. 7). For coated textured sample, there is no wear keeping the same operation time.

Figure 5. Friction coefficient performance for: (a) smooth block specimens, and (b) textured block specimens

4.2 Optical images of the test blocks

Friction force and the oil amount between the contact moving surfaces play an important role to identify the surface damage. Scratches and scuffing are some basic aspects of surface wear. Figure 6 shows the images of smooth blocks before and after the 30 min duration of the test. Stainless steel (SS) appeared scratches in sliding direction as it is observed in the Area A. At the same time, the chromium coated block shows slighter scars in the Area B. It is concluded that the chromium plated block has better resistance to the abrasive and adhesive wear.

Figure 6. Block species before and after the tests: (a) stainless steel (SS), and (b) chromium coated stainless steel (CSS)

Simultaneously, the photographs of the textured coated/uncoated samples are illustrated in Figure 7. Here, the oil film motion is provided and the scratches produced from the metal to metal contact are shown for textured stainless steel (TSS). Comparison of the images between the coated textured

sample before and after the experiment (Fig. 7b) has shown no visible scratches, indicating that the block didn't contact with the ring. Indeed, due to this operating condition is not expected significant contact. Note that the asperity contact is not enhanced, as the load/velocity is indicated around the mixed lubrication.

5. CONCLUSION

In this paper, the minimum oil thickness was measured by a block - ring system located at the Machine Design Laboratory of the University of Patras using the capacitive technique. Experimental measurements and numerical calculations of the oil film thickness are in a good agreement with relevant literature results. Artificially textured patterns with rectangular dimples were examined and compared with untextured cases. The duration of each test was 30 min using Newtonian oil SAE 30 under constant normal load of 5 N. Chromium coated and uncoated spaces were examined and optical images are presented before and after of each experiment.

The minimum oil film and the friction coefficient of the smooth/coated block was improved 5-28 % in comparison with uncoated case. Textured surface blocks shown a substantial oil increment in the order of 27 % in relation with the untextured case. The hydrodynamic lift of textured pattern increases the oil film, and hence the friction force is reduced.

Coated smooth and textured stainless steel shows a significant resistance without scratches at the contact area. However, the stainless steel blocks illustrate a larger area of scratches in sliding direction.

A numerical model should be further developed for a block-ring tribo pair, showing the pressure and thermal field of the surface contact. A scanning electron microscope (SEM) images can be compared after the tests, indicating more clear the metal to metal contact and the dimples wear. This is a point for further investigation.

ACKNOWLEDGEMENT

This work was supported by Grant E.039 from the Research Committee of the University of Patras (Programme K. Karatheodori).

REFERENCES

- [1] A. Ramesh, W. Akram, S.P. Mishra, A.H. Cannon, A.A. Polycarpou, W.P. King: Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication, Tribology International, Vol. 57, pp. 170-176, 2013.
- [2] S.P. Mishra, A.A. Polycarpou: Tribological studies of unpolished laser surface textures under starved lubrication conditions for use in air-conditioning and refrigeration compressors, Tribology International, Vol. 44, pp. 1890-1901, 2011.
- [3] I. Etsion: State of the art in laser surface texturing, Transactions of the ASME, Journal of Tribology, Vol. 127, pp. 248-253, 2005.
- [4] I. Etsion: Improving tribological performance of mechanical components by laser surface texturing, Tribology Letters, Vol. 17, pp. 733-737, 2004.
- [5] S.C. Vladescu, A.V. Olver, I.G. Pegg, T. Reddyhoff: The effects of surface texture in reciprocating contacts – An experimental study, Tribology International, Vol. 82, pp. 28-42. 2015.
- [6] E. Smazalová, Š. Houdková, M. Švantner: Tribological effects of discontinuous block-onring test, in: *Proceedings of the METAL 2014*, 21-23.05.2014, Brno, Czech Republic.
- U. Bihlet, P. Klit, T. Imran, C.L. Felter, A. Vølund: Investigation of piston ring cylinder liner dry wear using a block-on-ring test rig, in: *Proceedings of the 14th Nordic Symposium on Tribology NORDTRIB 2010*, 08-11.06.2010, Sweden.
- [8] G.E. Morales-Espejel, V. Brizmer, E. Piras: Roughness evolution in mixed lubrication condition due to mild wear, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, DOI: 10.1177/1350650115577404.
- [9] A.B. Zavos, P.G. Nikolakopoulos: Simulation of piston ring tribology with surface texturing for internal combustion engines, Lubrication Science, Vol. 27, pp. 151-176, 2015.

- [10] A. Zavos, P.G. Nikolakopoulos: Simulation and modeling of friction for honed and wave-cut cylinder bores of marine engines, Simulation Modelling Practice and Theory, Vol. 49, pp. 228-244, 2014.
- [11] I. Sherrington: Oil film thickness measurement: a contribution to the understanding and control of lubrication in the piston-ring packs of IC engines, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 225, pp. 595-601, 2011.
- [12] N. Grice, I. Sherrington, E.H. Smith, S.G. O'Donnel, J.F. Stringfellow: A Capacitance based system for high resolution measurement of lubricant film thickness, in: *Proceedings of the 4th Nordic Symposium on Tribology – NORDTRIB '90*, 10-13.06.1990, Denmark.
- [13] R.S. Mills, E.Y. Avan, R.S. Dwyer-Joyce: Piezoelectric sensors to monitor lubricant film thickness at piston-cylinder contacts in a fired engine, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 227, pp. 100-111, 2012.
- [14] A. Dhunput, M. Teodorescu, C. Arcoumanis: Investigation of cavitation development in the lubricant film of piston-ring assemblies, Journal of Physics: Conference Series, Vol. 85, Paper 012005, 2007.
- [15] Guide to the Expression of Uncertainty in Measurement, ISO, Geneva, 1993.
- [16] ASTM D2714-94 Standard Test Method for Calibration and Operation of the Falex Blockon-Ring Friction and Wear Testing Machine, 2014.