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Abstract: The limitation of the operation of conventional dry friction dampers (Coulombian dampers) is 
dependent on the static and kinetic friction coefficients. The paper aims to determine the values of two 
dampers solutions, one with a ring fixed to the outer tube and another with a ring fixed on the rod. A 
theoretical analysis of the rings deformation was performed for two constructive solutions. At the assembly, 
the ring is considered as a thick tube and in operation as an annular plate subject to tangential forces 
(friction forces) on the inner contour. For the theoretical model the values of the friction coefficients used 
were determined experimentally. 
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1. INTRODUCTION  
 

For vibration damping at different 
installations are used and dry friction dampers 
(Coulombian damper) tube-type ring-rod [1-4]. 
There are constructive solutions with axial 
fixing of the tube through elastic ring shape 
tube (tube with the lobes). 

The ring in the free state is a prism with a 
trapezoidal section with dimensions h, s1, L12 = 
πd1e, L13 = πd1i. After mounting in the tube 
lobes, the ring deforms so penetrate the lobes 
and it generates the contact pressure on the 
rod. Movement or trend in the movement of 
the rod towards the tube, there is friction 
between the ring and rod. This friction 
dampens the vibrations on direction rod.  

This paper aims to analyze the geometric 
conditions of ring elements (h, s1, d1e, d1i) of 
the tube (lobes geometry Δ, λ, d20), of the rod 
(d3e, d3i) and material properties, so that after 
mounting the ring fill wholly or partially the 

lobes and the global deformation response 
regime to be elastic.  

In this sense it determines the pressure of 
contact between ring and tube and between 
the ring and rod. Effect of contact pressure on 
the state of deformations and stresses is 
analyzed on the basis of the theory of elasticity. 

The contact pressure is determined by the 
geometry of the ring, of the tube and the 
elasticity characteristics of the material. The 
relative movement between rod and ring only 
appears when the force of the depreciation is 
greater than the force of static friction. 

This force defines load-bearing capacity of 
the shock absorber Coulombian. 

 
2. ANALYTICAL MODEL FOR THE 

CALCULATION OF CRITICAL PRESSURE 
 
It is considered that a recess of the tube is 

shaped like a torus with axial section 
cosinusoidal (Fig. 1) . 
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Figure 1. The tube  

 (1)  

with  .  

Unfold the ring and it is considered a 
contact elastic smooth plain surfaces with a 
profiled rigid surface (inner surface carried out 
of the tube). In this hypothesis it is accepted 
the stress function Airy on the form [6,7]:  

   . (2) 

where ps is the amplitude of the pressure of 
the contact and will be determined the terms 
and conditions outline. 

In this case, the tensions from a point on 
the ring are: 

 (3a) 

 (3b) 

 (3c) 

. (3d) 

On the basis of Hooke's law it is determined 
the relative deformations εx, εy, εz, γxz and then 
the displacements ux, uy and uz: 

   . (4a) 

   . (4b) 

      . (4c) 

       .  (4d) 

    (5a) 

       (5b) 

    (5c) 

where c is a constant of integration. 
Contact pressure amplitude ps and the 

constant c are determined in terms of the 
outline conditions on the deformed geometry 
of the ring in the lobes (the state plane of 
deformations) uz = Δ and ux = λ/4 for x = 0 and 
z = 0. 

From (5a), (5b) and (5c) in these 
circumstances the limit conditions (outline 
conditions), result:  

 (6a) 

  (6b) 

Substituting these constants of integration 
(ps and c) in (5a, b and c) it will determine the 
displacements at any point of the damper ring. 

For contact points between the ring and tube 
(z = 0), result: 

 (7a) 

 (7b) 

From (7) it is observed that the outline 
conditions :  and  . 

The condition concerning the filling of 
cosinusoidal lobes of the rigid tube, characterized 
by amplitude Δ and the wavelength λ (the 
distance between two neighbouring alveoli) is 
given by the pressure p* (6a). This pressure is 
defined as the critical pressure. 

Thus, between Δ and λ there must be the 
inequality: 

 ≤ λΔ
4

. (8) 

Critical pressure necessary to fill the rigid 
lobes of the damper Coulombian rigid tube 
shall be determined by the relationship (6a) , 

while abiding by the restriction ≤Δ 1
λ 4

. 

For any contact pressure lower than critical, 
elastic ring doesn't fills completely the lobes tube. 

 
3. THE STRESS STATE OF THE ELASTIC RING 

 
For geometrical optimization of Coulombian 

damper with rubber rings we should make an 
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analysis of the state of tension in the ring and 
accepts a criterion for deteriorate of the 
material of the ring. 

To make the following dimensional:  

 

 

 

 

 

Thus obtained: 

 (9) 

 (10a) 

 (10b) 

 (10c) 

 (10d) 

In Figures 2 – 6 there are presented 
adimensional pressure critical dependencies 
and tensions of a damper ring Coulombian. 

 
Figure 2. Pressure dependencies 

On the basis of main strains: 

  (11a) 

  (11b) 

determinate the main tensions adimensional: 

             (12a) 

             (12b) 

            (12c) 

 
Figure 3. Tension from the damper 

 
Figure 4. Tension from the damper  

 

Figure 5. Tension from the damper,  

 

Figure 6. Tension from the damper, . 

With the main tension can be determined 
the tension equivalent [8]. 

According to the theories of the II -nd (the 

maximum specific deformation) , the III -rd 
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(tangential maximum tension), the V -th 
(specific potential energy variation of shape), 
dimensionless equivalent tension is presented 
in Figure 7 and 8 as a function of the position 
of the point from the damper's elastic ring. 

 
Figure 7. Equivalent tension 

 
Figure 8. Equivalent tension 

From the analysis of graphs and analytical 
study of the main tensions, it follows that the 
tension equivalent is maximum (z = 0; x = 0; x = 
λ; x = 2λ; ...; x = mλ) where m is an integer. For 
the assessment of equivalent maximum 
tension is applied to the theory of IV -th of 
resistance (specific energy of deformation).  

 (13) 

and 

 (14) 

In Figure 9 there is represented the 
variation of maximum adimensional 
equivalent tension function of lobes (Δa) and 
different wavelengths of the lobes (λa). 

If the maximum equivalent tension from 
the damper's ring is smaller than a specific 
resistance of the material (σL), then the ring 

will deform elastically and the accumulation of 
energy by hysteresis is causing the removal 
from service.  

 
Figure 9. Variation of maximum adimensional 

equivalent tension 

If the maximum equivalent tension is 
greater than the specific resistance, then the 
damage will be done by breaking the ring.  

Taking into account that the maximum 
equivalent tension is adimensional through the 
longitudinal elasticity module (E), It means 
that this report represents the specific 
unconventional deformation (σ/E, τxz/E). 

If specific resistance is reported at the 
longitudinal elasticity module (s), then 
operating under the condition of function in 
elastic system is expressed by specifying 
conventional deformation. 

 . (15) 

where εcr is a critical relative deformation, 
determined by standardized tests of traction 
and compression. 

It defines the operating parameter of the 
damper's ring: 

       .             (16) 

and is presented in Figure 10 . 
For negative values of the parameter for 

the operation of the damper's ring Pel, the 
state of global deformation is elastic and for 
positive values, the state of deformation 
becomes plastic. 

Depending on the values of the coefficients 
static friction and kinetic, between the 
damper's rod and the ring , based on (16) and 
Figure 10, to determine the maximum load 
transmitted from the shock absorber. 
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Figure 10. The operating parameter of the 

damper's ring 

Limitation of such loads will be described in 
a subsequent work by determining the static 
and kinetic friction coefficients at different 
speeds. 

 
4. CONCLUSIONS 
 

Axial fixing of the ring in the alveoli can 
constitute a favourable technical solution. 

The optimum geometry of the alveoli is 
dependent on ring's elasticity and on the 
diameter of the damper's rod. 

Maximum equivalent tension of the ring 
appears on the exterior surface of the ring 
upon contact with the tube. 

Theoretical modelling leads to equivalent 
maximum tension after the IV -th theory

(specific energy of deformation). 
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