DEVELOPMENT OF DOMESTIC HYBRID COMPOSITES A356/SiCₚ/Grp WITH LARGE GRAPHITE PARTICLES

I. Bobić PhD¹, B. Bobić PhD²*, M. Babić PhD³, A. Venclo PhD⁴, S. Mitrović PhD⁵
¹Vinca Institute of Nuclear Sciences, University of Belgrade, Serbia. ²Gosta Institute, Belgrade, Serbia. ³Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia. ⁴Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia. ⁵PhD, Belgrade University of Applied Sciences, Serbia.

A356 alloy: Al-Si alloy with 0.03 wt.% Sr

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Mg</th>
<th>Cu</th>
<th>Fe</th>
<th>Zn</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt.%</td>
<td>7.20</td>
<td>0.29</td>
<td>0.02</td>
<td>0.18</td>
<td>0.01</td>
<td>balance</td>
</tr>
</tbody>
</table>

Properties: excellent mechanical characteristics, high wear resistance, very good corrosion resistance, very good casting and machining characteristics, good weldability

Application: High strength airframe and space frame structural parts, machine parts, truck chassis parts, high velocity blower and impeller

Improvement of characteristics:
- Heat treatment (T6 regime) → better mechanical properties
- Production of composites → increased wear resistance

AIM OF WORK: Preparation and characterization of hybrid composites A356/SiCₚ/Grp with large graphite particles

MAKING OF COMPOSITES

- Matrix: A356 alloy
- Secondary phases: SiC particles (24 μm), LARGE graphite particles (200 to 800 μm)
- Process: COMPOCasting → incorporation of secondary phases in the semi-solid melt of matrix alloy, with mechanical mixing
- Parameters: T = 610 °C, Vmix = 500 rpm, τul = 3, 4, 5 min
- Composites: conventional composite K1 (A356/10 wt.% SiCₚ), hybrid composites K2, K3, K4 (A356/10 wt.% SiCₚ + 1, 3, 5 wt.% Grp)
- Heat treatment (T4 regime): solution treatment at 540 °C for 1 h, followed by water quench (T = 20°C)

CHARACTERIZATION

MICROSTRUCTURE (SEM, XRD)

- Uniform distribution of SiC particles, without agglomerates and broken particles
- Mechanical bonding matrix/particle, continuous boundary surface (interface)
- No reaction: 3 SiC + 4 Al → Al₄C₃ + 3 Si

HARDNESS

Hardness of composites K1, K2 and K3 is higher than hardness of matrix (A356 alloy).
Hardness of composite K4 (5 wt.% Grp) is lower than hardness of matrix (A356 alloy) and hardness of composite K1, K2 and K3.

CONCLUSION

- Compocasting process is suitable for obtaining hybrid composites A356/SiCₚ/Grp
- Hybrid composites A356/SiCₚ/Grp are characterized with uniform distribution of secondary phases (SiC particles, large graphite particles) in the matrix (A356 alloy)
- Use of large graphite particles enabled a reliable control of compocasting process during infiltration of the particles and homogenous distribution of the particles in the matrix, without agglomerates (clusters)

Application of composites with A356 matrix

Electric train ICE-2 brake disc (AlSi7Mg + 20 wt.% SiCₚ): lower weight, greater resistance to wear

A356/graphite, constructive parts

Schematic view of the apparatus for compocasting:
- A. Processing part,
- B. Control and regulation of temperature.