DEVELOPMENT OF DOMESTIC HYBRID COMPOSITES A356/SiC_p/Gr_p WITH LARGE GRAPHITE PARTICLES

I. Bobić PhD¹, B. Bobić PhD²*, M. Babić PhD³, A. Vencl PhD⁴, S. Mitrović PhD³

¹"Vinca" Institute of Nuclear Sciences, University of Belgrade, Serbia, ^{2*}"Gosa" Institute, Belgrade, Serbia, ³Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia, ⁴Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia * biljanabobic@gmail.com, +381 62 8244700

A356 alloy: AI-Si alloy with 0.03 wt.% Sr

Element Mg 7,20 0,29 0,02 0,18 0,01 balance wt.%

Properties: excellent mechanical characteristics, high wear resistance, very good corrosion resistance, very good casting and machining characteristics, good weldability Application: High strength airframe and space frame structural parts, machine parts, truck chassis parts, high velocity blower and impeller

Improvement of characteristics:

- Heat treatment (T6 regime) \rightarrow better mechanical properties
- Production of composites \rightarrow increased wear resistance

AIM OF WORK: Preparation and characterization of hybrid composites A356/SiCp/Grp with large graphite particles

MAKING OF COMPOSITES

Application of A356 alloy

- Matrix: A356 alloy
- Secondary phases: SiC particles (24 μm), LARGE graphite particles (200 to 800 μm)
- **Process: COMPOCASTING** \rightarrow incorporation of secondary phases in the semi-solid melt of matrix alloy, with mechanical mixing
- **Parameters:** T = 610 °C, v_{mix} = 500 rpm, t_{inf} = 3, 4, 5 min
 - (1, 3, 5 mas.% large graphite particles)
- Composites: conventional composite K1 (A356/10 wt.% SiC_p) hybrid composites **K2**, **K3**, **K4** (A356/10 wt.% SiC_p + 1, 3, 5 wt.% Gr_p)
- Heat treatment (T4 regime): solution treatment at 540 °C for 1 h, followed by water quench (T = 20° C)

Schematic view of the apparatus for compocasting: A. Processing part, B. Control and regulation of temperature.

CHARACTERIZATION

MICROSTRUCTURE (SEM, XRD)

- Uniform distribution of SiC particles, without agglomerates and broken particles
- Mechanical bonding matrix/particle, continuous **boundary surface (interface)**
- No reaction: $3 \operatorname{SiC} + 4 \operatorname{Al} \rightarrow \operatorname{Al}_4C_3 + 3 \operatorname{Si}_3$

K1: A356/10 wt.% SiC (SEM)

- - Uniform distribution of SiC particles and large graphite particles, without agglomerates and broken graphite particles

K3: A356/10 wt.% SiC/3 wt.% Gr (SEM)

HARDNESS

- Mechanical bonding matrix/particle, continuous **boundary surface (interface)**
- No reaction: $4 \text{ Al} + 3 \text{ C} \rightarrow \text{Al}_4\text{C}_3$

Application of composites with A356 matrix

Hardness of composites K1, K2 and K3 is higher than hardness of matrix (A356 alloy). Hardness of composite K4 (5 wt.% **Gr**_p) is lower than hardness of matrix (A356 alloy) and hardness of composite K1, K2 and K3.

Electric train ICE–2, brake disc (AISi7Mg + 20 WT.% SiC_p): lower weight, greater resistance to wear

A356/graphite, constructive parts

CONCLUSION

 Compocasting process is suitable for obtaining hybrid composites A356/SiCp/Grp Hybrid composites A356/SiC_p/Gr_p are characterized with uniform distribution of secondary phases (SiC particles, large graphite particles) in the matrix (A356 alloy) Use of large graphite particles enabled a reliable control of compocasting process during

